Amber Review

A REVIEW OF CALLS TO THE WELSH AMBULANCE SERVICE CATEGORISED AS AMBER

SHANE MILLS & ROSS WHITEHEAD • OCTOBER 2018
THE AMBER REVIEW TEAM CONSISTED OF THE AUTHORS AND:

Integrated Information Lead
Dr Gareth John
NHS Wales Informatics Service
Advisor And Peer Reviewer
Professor Paresh Wankhade
Edge Hill University, UK
Research Support
Mr Iain Anderson
Integrated Care Expert
Patient And Staff Engagement Advisor
Mrs Katie Daly
Picker Institute Europe
Review Support
Ms Zoe Rees
National Collaborative Commissioning Unit

THE AUTHORS WOULD ALSO LIKE TO THANK THE FOLLOWING FOR THEIR CONTRIBUTIONS AND SUPPORT:

Members of the Expert Reference Group
NHS Wales Informatics Service
Welsh Ambulance Service NHS Trust
National Collaborative Commissioning Unit

SHANE MILLS
Mr Shane Mills is a Registered Nurse and Director of Quality and Patient Experience at the National Collaborative Commissioning Unit, NHS Wales.

ROSS WHITEHEAD
Mr Ross Whitehead is a Paramedic and Assistant Chief Ambulance Services Commissioner, NHS Wales.
Foreword

I am pleased to present this report as the culmination of a rapid and extensive review of the Amber response category. The ambulance service in Wales is a highly visible part of the NHS landscape and the move away from time based targets to focus on quality of care was an historic shift in ambulance service measurement. This shift has undoubtedly resulted in some questions being raised about the impact of these changes on the quality and safety of care that is delivered to the citizens of Wales.

As a result of this and as part of the recommendations of an independent review, the Emergency Ambulance Services Committee and I were committed to undertaking a clinically led review of the Amber category.

The Review is broad and covers every aspect of the ambulance service response to Amber patients and has identified a number of findings and recommendations that can be incorporated into the commissioning plan as we continue to develop and improve ambulance service delivery in Wales.

The Review provides me with assurance that ambulance services in Wales are getting to the sickest patients first and therefore I see no reason to recommenced wholesale changes to the Clinical Response Model.

In this review we have been presented with information which follows a patient’s journey from their call to the ambulance service to their discharge from hospital. I am assured from this information that the majority of patient outcomes are not affected by ambulance response times. This is not to say that a small number have been affected or had poor experiences and I am determined to address these.

As both the Chief Ambulance Services Commissioner and the Director of the Unscheduled Care Programme I am pleased that the findings of the review support the direction of travel in NHS Wales to focus on whole system measurement and quality.

There are opportunities for health services, staff and the public to work together to ensure we have an ambulance service that is used and delivered effectively.

I would like to take this opportunity to thank Shane, Ross, other members of the review team and contributors to this Review. Without the support and dedication of each individual and organisation we would have been unable to deliver such a comprehensive review in such a short space of time.

Mr Stephen Harrhy is the Chief Ambulance Services Commissioner and Director of the Unscheduled Care Programme for NHS Wales.
Executive summary

This report sets out the findings from the Amber Review launched in May 2018. There are two main areas that are addressed in the Review, based on the issues raised by the health service, the public, media and other stakeholders.

Firstly, is there a systemic problem with the Amber category that is resulting in worsening outcomes for patients. Secondly, are those patients, whose condition places them within the in the Amber category waiting too long for an ambulance response and if so what is the impact on their health and experience.

Qualitative and quantitative methodologies were used in this Review in order to deliver the depth and breadth of understanding needed to address these areas. The timespan of the Review was 1 April 2016 – 31 March 2018 in order to ensure access to all the relevant information.

The Review is set out in four sections, Explaining, Exploring, Delivering and Improving Amber. These sections aim to provide a comprehensive narrative to address the two main areas. Staff and patient feedback is embedded within each section.

The Welsh Ambulance Service is an essential component for delivering care in a complex adaptive system. Models, measurement and targets for Ambulance service delivery across the UK are becoming increasingly disparate, although there is a general trend towards reducing the emphasis on response targets as the primary outcome measure.

When asked, ambulance staff and the public support the principle of the Welsh model ‘to get the best response even if this is not the quickest response’.

Calls to the Welsh Ambulance Service are increasing and more work needs to be done to understand this. The Public support ambulance services doing as much as possible to avoid the need for them to go to hospital and staff feel they require more information on accessing alternative services.

Sickness levels remain high, reinforcing the need to ensure the emotional and physical wellbeing of staff is supported, especially call takers during periods of increased activity.

The Welsh Ambulance Service is taking less people to hospital despite an increase in calls although there is agreement that more can be done by both the service and the wider NHS.

The public agreed that the continued focus for the Welsh Ambulance Services must be quality of care. To support this the current ambulance quality indicators will be reviewed.

A pioneering way of following a patient journey from call to discharge was developed and used. This has provided assurance that the majority of patient outcomes have not been effected by ambulance response times although a small number have been effected and some patients will have had poor experiences.

The majority of patients categorised as Amber receive a prompt response and Ambulance services in Wales are getting to the sickest patients first although there are opportunities to enhance and improve the system. We found that increasing delays in ambulance response is due to the availability of resources not the clinical response model.

There is a compelling need for NHS Wales to work collaboratively and focus on providing a safe, timely and effective ambulance service.
Summary of Findings

Explaining Amber
- The prioritisation of calls is complex.
- There is a range of different responses depending on the patient’s condition.
- Ambulance staff felt frustrated by the restrictive nature of the prioritisation system.
- The public felt that it was important to get the best response for their condition even if this was not the quickest.

Exploring Amber
- There was increased demand in the Amber category.
- Ambulance staff felt that expanding the numbers and roles of clinicians in the control room was essential.
- Receiving a quick ambulance response but ensuring this is the right response for your condition is important to the public.
- Further work is required to explore the relationship between cancellations and re-categorisations and ambulance response.
- Further work is required to explore the relationship between hoax calls, refusals and ambulance response.
- The Public support ambulance services doing as much as possible to avoid the need for them to go to hospital.
- Staff require more information on alternative services.
- Measures of quality is as important as response times.
- Measurement of the ambulance service should be refined to reflect the whole patient journey.

Summary of Recommendations

Delivering Amber
- Funding for ambulance services has increased.
- The ambulance service does not always deliver sufficient resources to meet demand.
- The time ambulances are waiting outside hospitals has increased.
- Sickness levels remain high.
- Emotional and psychological wellbeing of staff is important.
- Call handlers should be supported, especially during periods of increased activity.
- Resource availability is the foremost factor in providing an appropriate response.
- A lack of resource availability can result in longer waits for some patients.
- There has been an increase in the number of Serious Adverse Incidents reported.
- The clinical response model is a valid and safe way of delivering ambulance services.
- Members of the public support the principles of the clinical model.
- The length of time you wait for an ambulance response in the Amber category, does not appear to correlate with worse outcomes.
- There are further opportunities to use the Integrated Information Environment.

- Measures of quality and response time should continue to be published although they need to reflect the patient’s whole episode of care.
- Measures should be developed in collaboration with patients.
- There should be a programme of engagement to ensure clarity on the role of emergency ambulance services and how calls are prioritised and categorised.
- There must be sufficient numbers of clinicians in the contact centres to ensure patients receive the most appropriate level of care.

- The ambulance service must ensure that planned resources are sufficient to meet expected demand.
- The ambulance service must deliver against its planned resource.
- Health Boards must take appropriate actions to ensure that lost hours for ambulances outside hospitals reduce.
- The longest waits for patients in the community must reduce.
Summary of Further work

- Understand the change in activity and explore opportunities for improvement in:
  - number of calls
  - patient cancellations
  - re-categorisation
  - refusals of treatment and transportation
- The role of the clinical support desk within the wider unscheduled care system should be reviewed.
- Health boards and the Welsh Ambulance Service should work together to ensure the current alternative services to hospital admission are being effectively used.
- A review should be undertaken by the Chief Ambulance Services Commissioner to support the Welsh Ambulance Service to maximise front line staff availability.
- A review should be undertaken by the Chief Ambulance Services Commissioner to support Health Boards to minimise lost hours to handover delay.
- The Chief Ambulance Services Commissioner will develop and implement a long wait reduction programme.
- There should be a review of the Serious Adverse Incidents reported and Regulation 28 notices received over the most recent winter to ensure lessons are learnt and shared.
- The Integrated Information Environment should be used to identify opportunities for improvement within the unscheduled care services.

Table of contents

Acknowledgements ........................................... 3
Foreword ......................................................... 5
Executive Summary .......................................... 6
  - Summary of Findings .................................. 8
  - Summary of Recommendations ....................... 9
  - Summary of Further Work ............................. 10
Table of Contents ............................................ 11
Preface ............................................................ 13
  Background .................................................... 14
  Structure of the Report ................................... 15
  Limitations of the Amber Review ....................... 16
Methodology .................................................... 17
Part A – Explaining Amber ................................. 19
  - The Clinical Response Model for Ambulance Services in Wales ............. 20
  - Clinical Response Models in other health systems ............................. 22
  - Measures and targets ..................................... 23
  - Prioritising calls .......................................... 25
  - Findings for Explaining Amber ......................... 28
  - Amber in Numbers .................................... 30
Part B – Exploring Amber .................................. 33
  - Public calls to the ambulance service .................. 34
  - Other callers to the ambulance service ............... 36
  - Answering a 999 ambulance call ..................... 38
  - Ambulance Verified Incidents .......................... 39
  - Incidents by category .................................... 40
  - Ambulances being sent to incidents .................. 41
  - When the Ambulance arrives ........................... 45
  - Measuring quality ........................................ 46
  - When the Ambulance leaves the incident ............. 47
  - Arriving at the Hospital .................................. 49
  - Findings for Exploring Amber ......................... 49
Part C – Delivering Amber ................................... 50
  - Demand and Capacity – Overview ...................... 51
  - Having enough capacity – Investment ................ 52
  - Having enough capacity – Staff availability .......... 53
  - Losing capacity – Ambulances waiting too long outside Hospitals .......... 57
  - Losing capacity – Ambulances getting ready for the next incident .......... 62
  - Losing capacity – Sickness ............................. 63
  - Demand and Capacity – Impact ......................... 66
  - Waiting times for ambulances ........................... 68
  - Serious Adverse Incidents .............................. 73
  - Do long waits cause harm? – Overview ............... 77
  - Do long waits cause harm? – Outcomes .............. 78
  - Do long waits cause harm? – Summary ................ 89
  - Findings for Delivering Amber ......................... 90
Part D – Improving Amber ................................. 91
  - Findings and Recommendations ....................... 94
References ....................................................... 97
Appendix ........................................................ 103
  - I – Terms of Reference ................................ 104
  - II – Methodology ........................................ 107
  - III – Expert Reference Group ......................... 108
Technical Appendix ........................................... 109
  - 1 – Methodology for linking data ...................... 110
  - 2 – Commissioning of Ambulance Services .......... 130
  - 3 – Call Categories ...................................... 132
  - 4 – Independent Evaluation ............................ 136
  - 5 – Welsh Ambulance Service Functions ............ 138
  - 6 – Medical Prioritisation Dispatch System .......... 142
  - 7 – Additional Activity and Information Analysis .... 144
  - 8 – Additional Performance Information and Analysis ................. 162
  - Technical Appendix References ....................... 166
NOTE

Please note that through this report we make reference to the opinions or reflections of ambulance operational staff or managers. These statements have been taken as part of focus groups (total 20 staff) or during individual interviews with 5 operational managers and whilst those opinions or reflections may be valid for those individuals or groups, they are not necessarily representative of the whole Welsh Ambulance Service workforce. These staff are referred to as operational managers or operational staff within the report.

Also note that any reference to ‘the public’ or ‘public opinion’ in this report, unless otherwise stated, are from YouGov Plc. Total sample size was 1000 Welsh adults. Fieldwork was undertaken between 31st August - 3rd September 2018. The survey was carried out online. The figures have been weighted and are representative of all Welsh adults (aged 18+).

There is a significant amount of data and information regarding emergency ambulances services currently available and whilst every effort has been made to validate all the data and information within this Report and align it to publicly available data there is the possibility of discrepancy.

Preface

In this section we explain the background to the Amber Review and the structure, methodology and limitations of this report.
1 Background

The emergency ambulance services in Wales are operated by the Welsh Ambulance Services NHS Trust which is commissioned, on a collaborative basis, by the seven health boards through the Emergency Ambulance Services Committee and the Chief Ambulance Services Commissioner who acts on the Committees behalf. Commissioning in this context means the needs of the citizens of Wales are identified and the ambulance services planned and secured to meet those needs.1

Every time a call is made to the official emergency 999 telephone line, the staff in one of Wales’s three ambulance clinical contact centres use information about the nature of the patient’s illness or injury to ensure they are provided with the right assistance. Contact centre staff are supported to gather this information through sophisticated software and a coding system which helps them to send an emergency ambulance, when needed, to the most urgent cases first. Since October 2015, in order to identify which cases are the most urgent, each call is placed in one of three categories. The categories are ‘Red’ (immediately life-threatening), ‘Amber’ (serious but not immediately life-threatening) or ‘Green’ (not serious or life-threatening). This way of categorising calls and sending the right medical help is termed as the ‘clinical response model’.2

“Review the call categories outside Red, in particular the Amber category. There is concern that this group is too large and not sufficiently discriminatory in terms of prioritising patients with high acuity illness, and that for some calls this is resulting in unacceptably long waits.”

The significant interest across the political and public spectrum in the quality and safety of the ambulance response, particularly for patients whose condition places them within the ‘Amber’ category has been recognised by Emergency Ambulance Services Committee and the Chief Ambulance Services Commissioner. The commitment to undertake a review was included in the Committees 2018/19 ‘Integrated Medium Term Plan’.3

The Welsh Government and the Cabinet Secretary for Health and Social Services also recognised the public interest and supported the Chief Ambulance Services Commissioner in requesting a clinically led review of the ambulance service response to patients categorised as ‘Amber’. This Report is the outcome of that review.

An independent review undertaken in 2017 supported the introduction of the new clinical response model and found it was delivering benefits for ambulance service patients. The review made a number of recommendations for further improvement to the model, including:

2 Structure of the Report

The Report is presented in four sections:

Part A – Exploring Amber
In this section we explain the Welsh Ambulance Service clinical response model, how ambulance calls are prioritised and the public and staff understanding of the Amber category.

Part B – Exploring Amber
In this section we follow the CAREMORE® ‘five step pathway’ used by Welsh Ambulance Services, starting from a patient making a 999 call for ambulance services to being taken to hospital. It demonstrates the changes that have occurred with calls and incidents in the Amber category over time.

Part C – Delivering Amber
This section considers how Welsh Ambulance Services are using their resources to meet the demands placed on it. It will also explore what happens when the daily demand cannot be met and some patients end up waiting a long time for an ambulance and what effect that may have on their health and experience.

Part D – Improving Amber
This section considers the findings of the Amber Review and highlights opportunities for improvement.

The full terms of Reference for the Amber Review are available in Appendix I.

Any discussion on ambulance services inevitably involves specialist terms, explanations, charts and statistics. We did not want to interrupt the flow of the report with exhaustive or technical explanations or to overwhelm the reader with detailed analysis, tables or charts. Therefore the main body of the Report is written, wherever possible, in non-technical language. The Technical Appendices expands on specific elements from the main body, providing supplementary detail and/or supporting data. Any cross reference from the main body of the Amber Review to the Technical Appendices is denoted by a small ‘’ just above the line of text with an accompanying technical appendix section, for example: 02
3 Limitations of the Amber Review

The Amber Review has been concluded within 6 months and we have attempted to engage with a representative range of stakeholders. We recognise that there is a need for wider engagement and a broader range of stakeholders will be included in the further work recommended by this Report.

The time period granted for the Amber Review has defined the depth and breadth of research and analysis. We have received assurance from members of the Expert Reference Group that the research underpinning the Review is of a high level and sufficient for the purposes of the production of this report.

There is a significant amount of data and information regarding emergency ambulances services currently available in the public domain and whilst every effort has been made to validate all the data and information within this Report and align it with that which is publicly available, there is the possibility of discrepancy.

Although both of the authors are employed by NHS Wales they have endeavoured to be as objective as possible whilst undertaking the Review.

4 Methodology

We have delivered a Report underpinned by a robust evidence base supported by staff experiences and patient opinions. We have used public information sources, supplemented by specific requested information from Welsh Ambulance Services to analyse and appraise the activity and operations of the Service over the last two years.

We established an Integrated Information Environment for the Review to enable data across the emergency care journey to be expertly analysed alongside clinical inquiry and discussion. We agreed on a two year time period to enable longitudinal and seasonal comparisons, agreeing on 1st April 2016 to 31st March 2018 to utilise the most recent validated information.

To assist us in developing the Amber Review methodology and validating the findings, we convened an Expert Reference Group consisting of a range of individuals with expertise and experience in academic research, operational management, unscheduled care and emergency ambulance services. The Expert Reference Group invitees are listed in Appendix III.

We commissioned the Picker Institute to support us to collect Welsh Ambulance staff views through one to one interviews and focus groups and public opinion through an online survey.

We have provided summarised findings throughout this Report and delivered pragmatic, focused recommendations for future areas of health service delivery, health policy and academic enquiry.

The methodology for each element of the Review is shown in Appendix II.
Explaining Amber

In this section we explain what the Welsh Ambulance Service clinical response model is in Wales, how ambulance calls are prioritised and the public and staff understanding of the Amber category.
PART A: EXPLAINING AMBER

5 The Clinical Response Model for Ambulance Services in Wales

In 2001, after a comprehensive UK wide review, ambulances services moved away from a historical system where vehicles were dispatched on a ‘first come first served’ basis to one where calls were prioritised and categorised into ‘A’ (immediately life-threatening), ‘B’ (serious but not immediately life-threatening) and ‘C’ (neither serious nor life-threatening).

Although the priority was changed, the success or failure of the ambulance services continued to be measured by the time taken for the ambulance service to reach the scene of an incident. In Wales the 2013 McClelland Review of Welsh Ambulance Service recommended that the Welsh Government move from the exclusive eight minute response time target, to a more ‘intelligent’ set of indicators that put a greater emphasis on patient outcomes and experience. The McClelland review also recommended a different approach to the commissioning of ambulance services which resulted in the establishment of the Emergency Ambulance Services Committee and the appointment of a Chief Ambulance Services Commissioner.

Following the McClelland Review and after due consideration, the Welsh Government in 2015 approved of a new approach for measuring the response to 999 calls.

This new approach, termed the ‘clinical response model’ moved away from categorising calls by ‘A’, ‘B’ and ‘C’ and introduced three new categories:

- **Red**
  The ‘Red’ category of call is for immediate life-threatening conditions where a person is in imminent danger of death.

- **Amber**
  The ‘Amber’ category of call is for those patients with serious conditions that are not immediately life-threatening, but which are urgent and may need treatment and care at the scene or rapid transport to a healthcare facility.

- **Green**
  The ‘Green’ category of call is for non-serious conditions which can often be managed by other health services, including healthcare advice or through self-care.

The clinical response model gave the ambulance service the ability to fully assess and prioritise patients before sending an ambulance.

The clinical response model was evaluated in 2017 and, although there were recommendations for improvement, the evaluation found that “The principles used to develop clinical model...are sound” and “the right direction of travel.”

One of the principles of the clinical response model is getting “the best response for my condition even if this is not the quickest response” and during the Amber Review public survey 92% of citizens stated that this was an important element of the ambulance service.

Welsh Ambulance Services managers interviewed for the Amber Review believed that the introduction of the clinical response model made services “patient centric and quality focused”.

92% of responders felt that “getting the best response for my condition even if this is not the quickest response” was an important element of the ambulance service.

The clinical response model was evaluated in 2017 and, although there were recommendations for improvement, the evaluation found that “The principles used to develop clinical model...are sound” and “the right direction of travel.”

One of the principles of the clinical response model is getting “the best response for my condition even if this is not the quickest” and during the Amber Review public survey 92% of citizens stated that this was an important element of the ambulance service.

Welsh Ambulance Services managers interviewed for the Amber Review believed that the introduction of the clinical response model made services “patient centric and quality focused.”

[The Introduction of the clinical response model made services] “patient centric and quality focused”. Operational manager
6 Clinical Response Models in other health systems

There is variation in how health services in different countries respond to emergency ambulances calls. Ambulance services in England have an Ambulance Response Programme which sets out national ambulance service standards. These standards are designed to improve ambulance services by ‘targeting the right resource to the right patient’. The Ambulance Response Programme has four categories: Life-threatening calls, Emergency Calls, Urgent Calls and Less Urgent Calls. In Scotland, a new clinical response model was introduced for the Ambulance Service in November 2016. The model focuses on improving patient survival and treatment rather than measuring the time it takes to respond. The principle of the model being to ‘send the right response to meet need’. Under the model, call handlers spend more time with patients to better understand their health needs and ensure they send the appropriate response for their condition. The new model has five categories: Immediately Life-threatening, Serious not Life-threatening, See, Treat and Refer, Hear, Treat and Refer, and Non-Emergency. During the facilitated focus groups undertaken for this Review, staff stated that it didn’t really matter what ‘colour the call was’ (with the exception of red), the issue was making sure calls were ‘sorted and prioritised correctly and accurately’. If you’ve got a thousand calls coming in, it doesn’t matter what colour coding they are, they have to be triaged, but you’ve still got the same poorly patients, whether they are a red call or whether they are an amber call.”

Operational Manager

Given the variation across the UK of category names, we feel that there should be consultation with the public to ensure the colour designations given to the call categories in Wales, and now used widely in the media and official publications, are the most appropriate descriptors or whether clinical categories (Immediately Life-threatening etc.) or other terms would give greater clarity to the public.

Call categories Scotland
- Immediately Life-threatening
- Serious not Life-threatening
- See, Treat and Refer
- Hear, Treat and Refer
- Non-Emergency

Call categories Wales
- Immediately Life-threatening
- Serious not Life-threatening
- See, Treat and Refer
- Hear, Treat and Refer
- Non-Emergency

Call categories England
- Life-threatening calls
- Emergency Calls
- Urgent Calls
- Less Urgent Calls

7 Measures and targets

The justification for using response time as a service measure is based on research on the relationship between time and clinical outcome for specific clinical conditions like cardiac arrest. For patients experiencing a cardiac arrest there is evidence of a relationship between delay in resuscitation and survival. In a UK study of response time and outcomes in patients considered to have life-threatening emergencies found no difference in mortality rates with response time longer than 8 minutes after adjusting for a range of patient and service characteristics. None of the available evidence demonstrates a direct relationship between ambulance response times and patient outcome in terms of mortality when it comes to other conditions, life-threatening or not. The value of a response time as a measure of the impact and quality of ambulance service care has been established for a number of conditions such as acute myocardial infarction and stroke. Ambulance services have a vital role to play in the overall journey of the patient with these conditions, but it is providing treatment at scene and delivering patients to an appropriate facility that has an impact on outcome.

Ambulance services in England have three response targets for categories below ‘Red’, which are similar, but with important differences to the Welsh Ambulance Service categories of ‘Amber’ and ‘Green’. Although some studies have shown that imposed targets can improve aspects of NHS performance, ambulance services in Scotland have, like those in Wales, moved away from response targets. In these countries targets, for the categories outside of Red, have been replaced by the measurement of response times, outcomes, care quality and patient experience. It has been stated that if health services are preoccupied with hitting targets then the actual journey an individual patient experiences becomes secondary; performance is determined against crude indicators, not the expectations and experience of those using the service. As part of a study paramedics described the role of response time targets in ambulance service culture as “an obsession” and “ludicrous”. They
felt targets dominated service delivery and took priority over factors which they saw as more important such as the quality of care provided or patient outcomes.\[23\]

Using targets instead of measures has been rejected by some as they give no incentive to achieve more than the target so in fact the “minimum becomes the maximum”.\[24\]

Benchmarking, a process by which a health service can measure and compare its own processes with those of others, and ideally with those that are leaders in a particular area, is useful in improving understanding and quality.\[25\]

We recognise the usefulness of benchmarking against other ambulance services, but believe the introduction of time based targets may create a distraction from understanding the patient’s journey from call to treatment. Later in this Report we explore how Clinical Indicators that span a patient’s whole episode of care co-developed with patient representative groups should be considered.

When you call 999 a telephone operator will ask you which emergency service you need. In a medical emergency in Wales you will be connected to the local ambulance service clinical contact centre unless all the call handlers in that centre are already busy, then calls are directed to any available 999 call handler in Wales.\[26\]

Once the call is connected to the ambulance service they are asked questions such as “is the patient breathing?” to identify immediately life threatening emergencies that may require a ‘Red’ categorisation.\[26\]

After ruling out a ‘Red’ categorisation, the call handler will ask some additional questions to determine the priority for dealing with the incident and to help provide the right advice. The Welsh Ambulance Service, as with many other emergency services in the United Kingdom and across the world, use a set of “protocols”. These protocols contain key questions and instructions for the call handler to provide a standardised way of classifying the type and medical urgency of the call. The set of protocols used in Wales is called the Medical Priority Dispatch System\[27\] and is the same system used by thousands of ambulance services across the world.\[28\]

The Medical Priority Dispatch System generates a specific set of letters and numbers, called a ‘dispatch code’, that is made up of three or four pieces of information, each of which is explained below:

- 1st piece is a number that indicates the specific condition that may be present after initial questions to the caller, for example Abdominal Pain/Problems, or Animal Bites/Attacks.
- 2nd piece is either E, D, C, B, A or Ω, and indicates how many crews are needed, their “expertise” and “how rapidly they are needed” for that patient’s condition. For example E means “closest vehicle with lifesaving equipment” and Ω means “refer to alternative care.”\[29\]
- 3rd piece is a number relating to further specific information about an individual patient’s condition, for example “not alert” or “clammy.”\[30\]
- 4th piece, only present with certain codes, provides very specific details that may be required in some situations, for example, whether it is a stabbing or shooting situation. This is important as a safe distance for knives is different than that for guns.
The Medical Priority Dispatch System has approximately 1,900 codes that can be generated in response to the caller’s answers. These codes are added to and amended by the International Academy of Medical Priority Dispatch in response to the information and evidence provided to them by the services that use the system.

Of these 1,900 codes 62% fall in the Amber category. Amber 1 codes account for around 14% of the codes and covers such things as recent strokes (within 4 hours) and chest pain. Amber 2 codes account for around 48% of the codes and covers such things as falls and less-recent strokes (over 4 hours).

What this does not mean is that all the people contacting ambulance services who believe they, or someone with them, is experiencing a stroke will be prioritised in the stroke protocol or as Amber, as other symptoms such as unconsciousness may mean that the call is categorised as another condition with a higher priority code, such as Red.

The system prioritises the urgency of a call comparative to others, but does not determine what type of vehicle to send or whether to send that vehicle under blue lights. This is left to each individual ambulance service as they are configured differently and have different resources, demographics and geography.

In Wales the group who determines how the ambulance service responds to a particular code is called the Clinical Prioritisation Assessment Software Group. This group allocates codes to one of the Red, Amber, Green classifications. It also uses sub-categories for a total of five classifications (Red, Amber 1, Amber 2, Green 2 and Green 3).

This group also determines the best response, (called “the ideal response”) or next best response, (called “suitable response”) for each individual code. These ideal or suitable responses could be a clinical telephone assessment, rapid response vehicle, emergency ambulance or a specialist resource. It should be noted that where an ambulance resource is available it should be dispatched without delay.

As an example – most codes related to stroke have Emergency Ambulance as the ‘ideal’ response. This is because, in order for these patients to receive the best level of care in a timely manner, they need to be transported to a hospital, therefore they need a vehicle with the capability of transport them safely.

Conversely a Rapid Response Vehicle is considered a ‘suitable’ response to stroke calls, as, although the staff member is able to assess and reassure the patient, the vehicle has very limited transportation capabilities.

Continuing to use stroke as an example: staff in the contact centre may send an emergency ambulance, as it’s the ideal response, to a call related to stroke even though a Rapid Response Vehicle, a suitable response, is closer.

Which ONE, if any, of the following would you expect to happen when contacting the emergency ambulance service via 999?

- An ambulance to be sent to me, only if an assessment showed I required an ambulance
- An ambulance to be sent to me immediately, after my needs were assessed but regardless of what those needs are
- An ambulance to be sent to me immediately, with no assessment of my needs
- Don’t know

73% 18% 6% 3%
Welsh Ambulance operational staff taking part in focus groups for the Amber Review (shortened ‘operational staff’). The majority of the Welsh Ambulance operational staff agreed that the Medical Priority Dispatch System “worked well” as an initial starting point to sort calls, although some felt that the inability for call handlers to deviate from the system was “restrictive”.

The operational staff acknowledged that once the code had been generated then they had “some flexibility” to ask questions but many lacked confidence to do this and were worried about the “consequences”.

Some Welsh Ambulance Service managers felt there was a lack of public understanding of the need to prioritise resources in some way and this can “cause friction with the public”.

However, in contrast some operational staff felt that in general when calling 999 the public were “beginning to accept” being asked some other information and being told that the condition they are calling about “doesn’t warrant an ambulance straight away”.

The majority (73%) of the public understand that they will be assessed before an ambulance is sent (see box) although 6% think there should be no assessment at all.

We found during the Amber Review that prioritisation of calls is complex and even where calls are in the same category, such as Amber, there is a range of different responses depending on the patient’s condition. We acknowledge the need for further public education on how calls are prioritised.

### 9. FINDINGS FOR EXPLAINING AMBER

- The prioritisation of calls is complex
- There is a range of different responses depending on the patient’s condition
- Ambulance staff felt frustrated by the restrictive nature of the prioritisation system
- The public felt that it was important to get the best response for their condition even if this was not the quickest
- Restrictive nature of the prioritisation system
PART A: EXPLAINING AMBER

THE DATA DISPLAYED IS REPRESENTATIVE ONLY, AND BASED ON AVERAGE VALUES OVER THE 2 YEARS OF THE REVIEW

Amber in numbers

Top 5 reasons for Amber calls
- 17% CHEST PAIN
- 14% BREATHING PROBLEMS
- 14% FALLS
- 8% SICK PERSON
- 7% UNCONSCIOUS

Average response time
- 33 min

Vehicles by Health Board

Percentage of people taken to a major Emergency Department
- 64%

Average time an Ambulance Crew spends with a patient before leaving them or taking them to Hospital (mins)
- 5.1 min

Percentage of people taken to a major Emergency Department
- 64%

Percentage of those people taken to a major ED who leave before being assessed (Self-discharge)
- 4%

Percentage of those people taken to a major ED who are medically discharged from there (Medically discharged)
- 43%

60% 23% 17%

17% CHEST PAIN
14% BREATHING PROBLEMS
14% FALLS
8% SICK PERSON
7% UNCONSCIOUS

PERCENTAGE OF PEOPLE taken to a major Emergency Department

64%

PERCENTAGE OF THOSE PEOPLE taken to a major ED who are admitted
52%

PERCENTAGE OF THOSE PEOPLE taken to a major ED who leave before being assessed
4%

PERCENTAGE OF THOSE PEOPLE taken to a major ED who are medically discharged
43%

60% 23% 17%
Exploring Amber

In this section we follow the CAREMORE®32 ‘five step pathway’ used by Welsh Ambulance Services, starting from a patient making a 999 call for ambulance services to being taken to hospital. It demonstrates the changes that have occurred with calls and incidents in the Amber category over time.
The number of 999 calls to Welsh Ambulance Services has increased from April 2016 to March 2018 as shown in Figure 1. In 2016/17 the total number of 999 calls to WAST was 486,085 and in 2017/18 it was 540,891, an increase of 11.3%.

Effective managing the number of calls to ambulance services will improve performance throughout unscheduled care services and potentially deliver better health outcomes for patients. Operational staff felt that a “large volume of calls” to the service could be “prevented” through better public education.

Operational staff said that they believed ‘the public’ viewed the emergency 999 number as a ‘fall back system’, saying, “When patients don’t know what to do they’ll ring 999, so some education learning there would be good.”

Operational staff mentioned that the public had a lack of knowledge of alternative services, in particular Minor Injury Units. One staff member stated that Minor Injury Units were “the best kept secret of the health service”.

We feel that there should be a clearer understanding of demographic, socio-economic, health related and other factors behind the rise in the number of people calling the Welsh ambulance service as it is crucial to improving the management of future demand.

The reasons for this increase in the number of calls to ambulance services experienced in many countries is multifaceted but could include:

- Wales has an ageing population which can mean more frailty, more dependency, more people with chronic conditions and more people with multiple conditions that require multiple treatments or interventions.
- Complex social issues such as poverty, a lack of personal social support, increased separation from close family, diminished access to transport and increasing alcohol related problems.
- There may be some cultural issues with some people’s desire for a convenient ‘easy access’ solution to their health concerns that allow them to bypass perceived or actual complex community pathways and access to primary care services.
- There may be issues with local care provision – people may not understand how to directly access the range of primary care services available. They may be directed to urgent care services by other services such as NHS Direct or Out-of-Hours/In-hours GP services.
- Daily, weekly or seasonal peaks in demand.
- There could be people who are calling ambulance services back to find out when the ambulance will arrive, to tell the ambulance service that the situation has changed or to cancel the ambulance.
- Multiple people calling ambulance services about the same incident.

Operational staff felt that a “large volume of calls” to the service could be “prevented” through better public education.

Operational staff said that they believed ‘the public’ viewed the emergency 999 number as a ‘fall back system’, saying, “When patients don’t know what to do they’ll ring 999, so some education learning there would be good.”

Operational staff mentioned that the public had a lack of knowledge of alternative services, in particular Minor Injury Units. One staff member stated that Minor Injury Units were “the best kept secret of the health service”.

We feel that there should be a clearer understanding of demographic, socio-economic, health related and other factors behind the rise in the number of people calling the Welsh ambulance service as it is crucial to improving the management of future demand.
11 Other callers to the ambulance service

The majority of calls to the Welsh Ambulance Service are made by the general public, however a substantial number are made by the police or other healthcare services like GPs and nursing homes.

Welsh Ambulance Services see primary care health services as a key partner in delivering sustainable patient care, although some operational staff felt the ambulance service was used as a “safety net” by some GPs. The 2013 McClelland Review found that call handlers did not feel empowered to challenge GP calls. We support the work of the Chief Ambulance Services Commissioner in promoting effective collaboration between primary care and emergency ambulance services.

Nursing homes for older persons are another service that frequently call the ambulance service. Operational staff believed that there was a significant number of calls from nursing homes for patients that had fallen. Operational staff felt it would be beneficial for all nursing homes to have a defibrillator, lifting cushions and be trained in resuscitation. The Welsh Ambulance Service is already working closely with some nursing homes in specific areas of Wales to try and reduce calls, usually by providing lifting equipment and training and the expansion of this work should be explored.

The Police force is also a substantial user of ambulance services, not surprisingly as they are typically dealing face to face with the public or are called to incidents and accidents. Operational staff felt that some police officers do not fully understand how the prioritisation process works although ambulance clinicians are increasingly present in some police control rooms to provide advice and support.

Operational staff were frustrated with persons calling ambulance services because of alcohol intoxication as the “paramedics go out and end up just putting that person in a taxi to get them home”. Operational staff felt they had “a lack of training” to be able to deal with calls from persons experiencing mental distress. They suggested a trained mental health professional working in the contact centre would “help alleviate a lot of pressure”.

We recognise that Welsh Ambulance Services have recently appointed a mental health lead to explore opportunities to improve staff confidence in dealing with callers with mental distress. We believe part of this role should be to better understand the demand from those with substance misuse, drug or alcohol issues and transient mental distress, often combined as ‘mental health’ as they require different responses from health and social care services.
12 Answering a 999 ambulance call

When someone calls the ambulance service through the emergency 999 number call handlers make every effort to answer the call as quickly as possible. The Welsh Ambulance Service track the number of calls that take less than 6 seconds to answer as an internal measure. Figure 2 shows performance against this measure for two years from April 2016 to March 2018 and demonstrates a downward trend over that period.

Answering ambulance calls promptly is a difficult task, especially given the 11% increase in number of calls. Operational staff talked about how they regularly go “off shift worrying about a patient” and about needing more support for their own emotional and mental health when dealing with “extreme pressures” day to day. Operational managers felt that contact centre staff were “undervalued” and that call handler duties are “extremely stressful and anxiety inducing”. We support the need to safeguard the emotional and physical wellbeing of staff, particularly after distressing calls, and understand that Welsh Ambulance Services already have several initiatives in this area which should be sustained and developed.

Figure 3 shows that verified incidents have risen at a reduced rate compared to calls. Overall there has been 2.2% increase in verified incidents when comparing 2016/17 and 2017/18.

The reason there has been an 11% increase in calls answered but only a 2.2% increase in incidents needs to be understood. Reasons could include: multiple people ringing to report the same incident, calls passed to other ambulances services, calls abandoned prior to assessment, cancelation requests and people re-contacting ambulances services to get an update on a previous call.
14 Incidents by category

The overall 2.2% rise in incidents discussed in the previous section, has not been uniform across all categories. Those incidents categorised as Red have seen a rise of 14.6%, Amber has seen a rise of 7.6%, and there has been drop of 9.7% in incidents categorised as Green. These variations are illustrated in the Figure 4.

Understanding why there has been a rise across the Red and Amber categories and a reduction in Green can support planning and delivery of ambulance and wider unscheduled care services.

15 Ambulances being sent to Incidents

The number of Amber incidents requiring an ambulance to be sent* has risen 1.2% between 2016/17 and 2017/18 as shown in Figure 5.

* In this review for simplicity we refer to ‘ambulances attending or ambulances being sent’ as an Emergency Ambulance as it is the most common vehicle. Note that there are other ambulance resources (E.G. Rapid Response Vehicles, Air Ambulances)
PART B: EXPLORING AMBER

One of the reasons the 2.2% rise in the number of verified incidents has not resulted in an equivalent rise in the number of emergency ambulance being sent to patients is the expansion of the ‘clinical support desk’ within the ambulance contact centres. Introduced after the McClelland review of ambulance services in Wales in 2015, and funded by Welsh Government, this clinical support desk team of nurses and paramedics provide clinical triage and advice to callers.

Operational staff suggested that there are opportunities to use the clinical support desk as part of an extension of the clinical response model. An example given by staff was that after identifying a code as not immediately life-threatening calls would be “taken by a trained clinician who can ask relevant questions” and provide the right support.

Operational staff felt that having more clinicians in the contact centre would be “extremely useful” as they can use “clinical judgement” to ensure the appropriate prioritisation of incidents. Contact centre clinicians could also “give callers an honest estimation of how likely they are going to wait” and “recommend alternative pathways”.

Contact centre staff also felt that in future Advanced Paramedic Practitioners (a new initiative where paramedics with advanced skills attend incidents) could “help teams within the contact centres” although some staff felt that this initiative needed “more clarity”.

The Amber Review survey found that 88% of the public thought it was important that ambulance services provide medical advice on the phone that avoids the need for an ambulance to attend an incident.

Another possible reason for the variation between the number of verified incidents and the number of ambulances being sent is callers cancelling the ambulance prior to its arrival. There has been a 129.5% increase in these cancellations between 2017/18 and 2016/17. There is a need to explore the relationship between these cancellations and long waits for emergency ambulances.

88% of patients think it’s important that ambulance services provide medical advice on the phone that avoids the need for an ambulance.
16 When the Ambulance arrives

When an ambulance arrives at an incident the patient’s clinical condition will be assessed and treated, if possible, at the scene. If the patient’s condition requires it, they will be taken to either the nearest hospital emergency department or to a specialist centre.26

There may be opportunities to work in partnership with the public about how they can help ambulance staff before and when they arrive at the scene of the incident.

Ambulance staff normally treat patients with no prior knowledge of their conditions or medical history. It would support ambulance staff to treat more people at the scene of the incident if they had access to patient information such as medication, allergies and medical history.27

Sometimes when an ambulance arrives at an incident the patient cannot be found, they may have decided they no longer required help or it could have been a hoax call. Between 2016/17 and 2017/18 there was a 17.5% increase in the number of times a patient wasn’t present when the ambulance arrived.

Sometimes when an ambulance arrives the patient “refuses to be treated”, or taken to the hospital by the ambulance crew. We recognise that further work is required to understanding the reasons for refusal and guide the development of better services to meet patient needs.
17 Measuring quality

There are a broad range of conditions categorised as Amber and, alongside response times, Welsh Ambulance Service and its Commissioner measure interventions being provided through a set of ‘Ambulance Quality Indicators’.16

97% of patients told us it is important to measure the quality of the treatment provided to them. We need to ensure that as many patients as possible in the Amber category are covered by clinical indicators.

We also recognise these indicators need to reflect the whole patient journey and be developed in partnership with patient representative groups.

18 When the Ambulance leaves the incident

Not all patients attended by ambulance crews are taken to hospital. Following assessment and treatment by the crew they may be left at home with advice or referred to a community health service.

There has been a reduction in the number of patients taken to hospital for the Amber category of 0.1% from 2016/17 and 2017/18 as shown in Figure 7.

We recognise the important of the ambulance service reducing the number of patients being transported to hospital and all opportunities to improved this should be explored.

An additional factor in reducing the number of patients being taken to hospital is the availability of other health and social care services to support the patient.

Operational staff admitted that they “do not always know what pathways are available” and “how to help them access them”.

It has been found that making sure staff have access to an easily navigable up to date electronic register of services helps them to access alternative community or health services. Welsh Ambulance Services staff stated they had a partial register in place but there was “a need to be able to know more” about them so staff can access them and direct callers “to the right service”. We recognise that NHS Wales is currently adopting a national directory of services.
19 Arriving at the Hospital

Once they arrive at hospital, normally at the emergency department, ambulance staff will pass on medical information to hospital staff and transfer the patient and therefore the responsibility for their ongoing care, to the department.29

Such transfers of care from one set of clinical staff to another are normally labelled as ‘handovers of care’ or colloquially as just ‘handover’. There can be a delay in handing over patients between ambulance services and the emergency department and this is discussed in the ‘Delivering Amber’ section.

52% of patients thought they would be seen quicker in the Emergency Department if they arrived by ambulance. Work should be undertaken to ensure the public understands that assessment at the emergency department is based on clinical need and not by the mode of arrival.

We recommend that there should be a programme of public education, consultation and engagement on the role of emergency ambulance services as well as how calls are prioritised and categorised.

20 FINDINGS FOR EXPLORING AMBER

- There was increased demand in the Amber category.
- Ambulance staff felt that expanding the numbers and roles of clinicians in the control room was essential.
- Receiving a quick ambulance response but ensuring this is the right response for your condition is important to the public.
- Further work is required to explore the relationship between cancellations and re-categorisations and ambulance response.
- Further work is required to explore the relationship between hoax calls, refusals and ambulance response.
- The Public support ambulance services doing at much as possible to avoid the need for them to go to hospital.
- Staff require more information on alternative services.
- Measures of quality is as important as response times.
- Measurement of the ambulance service should be refined to reflect the whole patient journey.
- Measures should be developed in partnership with patients.
- Members of the public wish to be supported and be better informed when making a 999 call.
- More patients in the Amber category are having their incident resolved or closed over the phone.
Delivering Amber

This section considers how Welsh Ambulance Services are using their resources to meet the demands placed on it. It will also explore what happens when the daily demand cannot be met and some patients end up waiting a long time for an ambulance and what effect that may have on their health and experience.

21 Demand and Capacity – overview

In the previous section we discussed the number of people calling ambulances, the number of incidents, the incidents being closed over the phone and ambulances being sent to patients. This collection of activities can be termed the ‘demand’ placed on the Ambulance Service.

In order to give the best possible response to patients the Welsh Ambulance Service needs to meet this demand which, at various degrees, is present every hour of every day. The service needs to have the right number of people in the clinical contact centres answering calls and managing incidents and the right number of emergency ambulances and other vehicles on the road at the right time. These staff and vehicles are the ambulance service’s ‘capacity’.

Matching demand and capacity is a fundamental requirement for delivery of first-class modern health and social care services.

Welsh Ambulance Services should have the right capacity available to match the daily demand. Sometimes events occur (for example road traffic accident with multiple vehicles) which cannot be foreseen and produce a brief spire in demand but otherwise demand follows a generally predictable pattern.

When Welsh Ambulance Services do not have enough capacity to meet the demand this can create a ‘gap’ and sometimes this gap can be closed, by bringing in extra capacity or by changes in process, but sometimes it cannot. When this demand /capacity gap cannot be closed it results in problems delivering the required response to patients and therefore some patients wait longer.

There are two main reasons why a ‘gap’ between demand and capacity can occur. The first is not having the necessary capacity in the first place, either through lack of investment or having issues with organisation planning and the second is by losing capacity through ambulances waiting too long outside hospitals, preparing ambulances for the next incident and staff sickness. Each of these reasons will be discussed further in this report.
As with all parts of the NHS in Wales, every year the ambulance service receives funding to run their services1,2 and this funding needs to match their aims and objectives3,4 which in the ambulance services case is set by the commissioners.

The clinical response model also provides a mechanism for enabling ambulance services to better use the resources they have for the benefit of patients, which the Welsh Ambulance Service has started to do, for example by becoming more efficient at sending the right type of vehicle and reducing the number of vehicles sent to incidents.

As well as the normal annual funds and uplifts for inflation, over the last few years the Welsh Ambulance Services has received additional funds from the Welsh Government and commissioners to support initiatives such as avoiding taking patients to hospital, ensuring more patients are cared for at home and expanding the clinical support desk.

This increase in funding is shown by comparing Welsh Ambulance Services revenue for patient care activities in 2017/18, which was £167 million compared to 2016/17 when it stood at £156 million. Comparing staff working for Welsh Ambulance Services across the two years also shows an increase from 2,982 in 2016/17 to 3,059 in 2017/18.

Commissioners should continue to provide the Welsh Ambulance Services with the level of funding to deliver the right level and quality of patient care and that the funding received is dedicated to front line service.

A challenge for any ambulance service is ensuring the right number of staff with the right skills are available at the right time to match the demand for services.

Scheduling of staff to ensure there are sufficient crews to meet daily demand is a complex task due to regulations relating to various aspects of staff management. These regulations include limits on the number of consecutive work hours, the number of shifts worked by each employee and restrictions on the type of shifts assigned.

The number of staff hours that Welsh Ambulance Services plan to be made available per day once factors such as sickness levels, holiday allowance, training time and other anticipated non-availability has been taken into account is called the “planned” staff availability. It would be challenging for an ambulance service to always get a precise match between planned staff and the actual staff availability but any sizable or continuous variation may be a problematic issue.

Figure 8 shows that on average actual staff availability was 3.3% below the planned staff availability.

---

1. Welsh Ambulance Services funding
2. £156 million in 2016/17
3. £167 million in 2017/18

---

**Figure 8:** Number of staff hours planned to be available and number of hours actually available.
We need to understand the impact of this difference between planned and actual staff availability, particularly with emergency ambulances and reflect that staff spoke about how many ambulances were deployed at any one time and how this “seems to be fewer than it used to be even with an aging population and an increase in emergency calls.”

The Welsh Ambulance Service acknowledge that there are issues in planning for staff availability and they commissioned a ‘Demand and Capacity Review’ in 2016 and have begun to implement the findings from this review which includes improving rostering.11

The Welsh Ambulance Service can reduce these operational shortfalls by offering employees paid extra shifts. Although this is a normal way for ambulance service to operate it does depend on the willingness of staff to work additional hours, and can increase staff stress and lead to exhaustion.12

We were keen to understand the association, if any, of staff availability and the waits that can be experienced for patients whose conditions have been categorised as Amber. Figure 9 shows the results of comparing the variation in staff availability in hours and the ‘Amber 95th percentile’. *

* The ‘95th Percentile’ is calculated as the value below which a certain percentage of patients fall. For example if the 95th percentile for a response time was 20 minutes then 95% of calls would be answered within that time and 5% would wait longer.

Figure 9 shows that the comparison is indistinct except for the three months of 2018.

143,677 hours lost to planned/actual gap over two years
Handovers of care are sometimes governed by measures of time, set locally or nationally, and when the time taken to handover care exceeds this agreed time period it is classed as a ‘handover delay’. The underlying reasons behind handover delays are multifactorial and may include:

- Major incidents making emergency departments and hospitals busy.
- Disrupted management of patient movement within and out of hospitals, including transferring patients from Emergency Departments into wards.
- Patient flow through the hospital.
- Seasonal pressures such as winter flu outbreaks.
- Behaviour of professionals in primary care (volume of healthcare professional referrals).
- Reduced staff resources, equipment and capacity in Emergency Departments.
- Physical environment of hospital sites and Emergency Departments.

When we try to calculate handover delays we normally convert the time waiting outside of hospital to ‘lost hours’, this means that for that period of waiting the ambulance cannot go to another incident. Calling it a ‘lost hour’ is an operational term and it does not mean that the time the crew spend with the patient is not valued and an important contribution to clinical care.
When we examine the data from April 2016 – March 2018, shown in Figure 10, we can see that the number of hours (over 15 minutes) that have been ‘lost’ due to waiting outside of a hospital has risen over both winters of 2017 and 2018 with January and February 2018 being particularly high.

In Wales there is a standard that requires 95% of patients to be handed over in 15 minutes. Figure 11 shows the percentage of patients handed over within 15 minutes, and therefore those that take longer than this. It demonstrates that the target has not been met for two years with 54% of patients being handed over to hospital staff within 15 minutes in April 2016 to 45% in March 2018.
The 15 minutes target does clearly represent how long some patient may wait in an ambulance outside of a hospital. Figure 12 shows the number of patients waiting in time bands.

![Figure 12: Number of Patients Waiting in Time Bands](image)

The consequences of the patient remaining on the ambulance outside of a hospital is that they are being cared for in an environment which is designed and equipped to deal with emergency incidents not for the provision of prolonged periods of care. This means the vehicle lacks toileting and food and water facilities as well as appropriate mattresses and seating supports.

Patients have said they would like to be kept informed during their wait\(^6\) and we support the Welsh Government advice to keep patients and their carers fully informed of the reason for any handover delay and the progress in resolving it.\(^7\)

Handover delays have been associated with high levels of stress for all staff groups, and in particular frustration for ambulance crews waiting with patients outside the hospital.\(^8\)

Patients waiting in ambulances outside of hospitals may have a poor experience of care\(^9\) although some have said they were reassured by the continued presence of ambulance staff.\(^10\) We recognise more work needs to be done to understand patient experience although we presume it is not dignified and progressive care if patients are waiting in an ambulance for several hours.

We recognise that the principal issue with handover delays is that they prevent emergency ambulances from responding to other calls and this is discussed in later in this report.\(^11\)

We recognise the pressure the wider unscheduled care services, especially emergency departments are under, however we need to urgently collaborate as a whole healthcare system to address the issue of handover delays.
25 Losing capacity – Ambulances getting ready for the next incident

After transferring the patient to hospital staff the ambulance crew get the vehicle ready before making themselves available to respond to the next incident (called being ‘clear’). It is important to note it is not always possible to be ready for a new case quickly as staff should be allowed time to emotionally recover after dealing with a stressful incident. They may also need time to restock the ambulance with medication and equipment.

There is an expectation that the ambulance crew take no more than 15 minutes for this activity.

Figure 13 shows that the number of hours that have been lost from ‘handover to clear’ (above 15 minutes) as reported by Welsh Ambulance Services has risen by 45% and over the two years.

We need to explore the reasons why there should be such a rise in the hours lost to handover, it could be a change of process, or that restocking is taking longer or it could be that staff require longer to recuperate given that they may have cared for patients for a longer period than usual.

26 Losing capacity – Sickness

As in any large organisation there are always a number of staff who have illnesses/accidents which prevent them for working. These rates of staff absence due to sickness are closely monitored in the NHS.

In England it is known that ambulance services have the highest sickness rate in the NHS and Welsh Ambulance Services have the highest sickness rates of any NHS Wales organisation.

Figure 14 shows the sickness level for all staff and demonstrates the higher levels through the winter periods. Welsh Ambulance Services acknowledge that through the winter of 2017/18 sickness was the “highest we have experienced for a number of years”.

We need to explore the reasons why there should be such a rise in the hours lost to handover, it could be a change of process, or that restocking is taking longer or it could be that staff require longer to recuperate given that they may have cared for patients for a longer period than usual.
It is essential to reduce sickness rates as high sickness absence rates contribute to ‘poor resource utilisation’, meaning less capacity.

**Figure 15** the number of hours that have been lost from ‘front line’ staff sickness (excluding management or administrative staff) from April 2016 to March 2018.

We recognise that Welsh Ambulance Services have taken a number of actions to support staff emotional and physical health and reduce sickness rates although some staff felt there was a “lack of support” for their own “mental health”. Staff also discussed the “abuse” they get “day to day”.

Operational staff talked about how their jobs impacted their health and life outside of work. The staff explored the improved focus on rest breaks and shift finishing times recognising that this benefits staff welfare. Although they also acknowledged that this may have a ‘knock on effect with response times’, by reducing available capacity.

We recognise that some patients will become frustrated with long waits, but abuse cannot be tolerated and we support Welsh Ambulance Services in ensuring that action is taken against every act of harassment.

Welsh Ambulance Managers also state they have reviewed rosters in order to better fulfil the principles of the clinical response model, although they also said that these changes in shift patterns could affect staff work-life pattern.

We acknowledge that the Welsh Ambulance Service recognises that the health and wellbeing of their staff is “crucial to delivering and maintaining safe, high quality healthcare” and are working with trade union partners to help staff to be as “healthy, well and resilient as possible” although we also recognise the impact of this work is still to be seen in reported staff sickness rates.

---

**FIGURE 15: WELSH AMBULANCE SERVICES LOST HOURS DUE TO FRONT LINE STAFF SICKNESS**

88,095 hours lost to front line staff sickness
27 Demand and Capacity – Impact

We have attempted to discuss the various elements of demand and capacity separately in order to fully explore the contributory factors for each. However, this does pose challenges for understanding how each of these elements interacts with others to ultimately impact on the response provided to patients.

Figure 16 endeavours to compare lost hours, resource availability and the Amber 95th percentile.

In the winter of 2017/18 we see a combination of circumstances of shortfalls in staff availability and a significant amount of lost hours which resulted in a increase in the length of time some patients are waiting.

Operational staff felt that “resourcing issues” were a major issue and that the response model is not designed for such “restricted resources” and this was exacerbated by “hospital delays”. One staff member summed this issue up by saying:

“If we had the ideal crews, no hospital delays, we would get to our patients a lot quicker.”

Operational staff
28 Waiting times for ambulances

As stated previously handover delays are a significant contributory factor in the loss of ambulance resources. This loss can manifest in longer ambulance response times. Figure 17 shows the relationship between hours lost to handover delay and Amber 95th percentile.

There were 536,260 incidents categorised as Amber between April 2016 and March 2018. 59% of patients waited less than 20 minutes for an ambulance and 87% waited less than 60 minutes as shown in Figure 18.
Within the overall Amber category there is a variance in response time between incidents categorised as Amber 1 or Amber 2. The majority, 65% of Amber incidents, were categorised as Amber 1 and in this category 66% waited less than 20 minutes for an ambulance response and 92% waited less than 60 minutes as shown in Figure 19.

The remaining 35% of the total number of Amber incidents were categorised as Amber 2 and in this category 45% waited less than 20 minutes for an ambulance response and 77% waited less than 60 minutes as shown in Figure 20.
Waiting for an ambulance, even for a short time can cause anxiety and frustration, especially if the patient is on their own, and information provided by the call handler, such as ambulance arrival time and what to do while waiting could reduce uncertainty in a stressful situation. The Welsh Ambulance Services should consider actions to reduce anxiety whilst patients were waiting with 97% of the public saying they would like to be told the approximate ambulance arrival time.

Contact centre staff may call waiting patients back to ensure their condition has not deteriorated. If during these ‘call backs’ the patient gives new information the call may be re-prioritised. This may re-prioritisation may also occur if the patient calls back. 88% of the public thought that receiving regular ‘call backs’ from the ambulance service whilst they wait for a response was important. Sometimes when the volume of calls gets very high, these ‘calls backs’ get suspended. The reason for this is to ensure new calls get answered promptly. We believe that patient welfare checks are a vital part of the continuity of care that should be offered by Welsh Ambulance Services and that their suspension during periods of escalation should be reviewed.

The Amber Review has demonstrated that the majority of patients are receiving a timely response, however there is a compelling need for NHS Wales to work collaboratively to ensure a safe, timely and effective ambulance service.

Serious Adverse Incidents are events where the consequences to patients, families and carers, staff or organisations are so significant or the potential for learning is so great, that a heightened level of response is justified.

There are policies and guidance in place for all NHS Wales organisations to describe the circumstances in which a Serious Adverse Incidents response may be required to ensure that they are investigated thoroughly and, most importantly, learned from to prevent the likelihood of similar incidents happening again.

From April 2016 to March 2018 Welsh Ambulance Services reported 90 Serious Adverse Incidents in their ‘Monthly Integrated Quality and Performance reports’. Figure 21 displays the reported incidents by months over the two year period, there were 28 incidents in 2016/17 and 63 in 2017/18 with a clear rise in the winter 2017 period.

![Figure 21: Number of Serious Adverse Incidents Reported by Welsh Ambulance Services](image-url)
The reason for any rise in Serious Adverse Incidents can be multifaceted and difficult to identify. One of the simpler explanations is that the rise in the number of Serious Adverse Incidents shown in Figure 21 relates to a rise in the number of verified incidents, the logic being that as demand increases, if the probability of a Serious Adverse Incident remains fixed, then the quantity would rise.

As Figure 22 shows there does not appear a clear correlation between the number of verified incidents and the number of Serious Adverse Incidents as the number of incidents dropped in November 2016 and November 2017 compared to the previous months, however there was a rise in Serious Adverse Incidents in both months.
Another proposition is that the number of Serious Adverse Incidents can be linked to longer waits for ambulances. Figure 23 correlates the number of Serious Adverse Incidents against the Amber 95th percentile.

**FIGURE 23 COMPARISON BETWEEN NUMBER OF SERIOUS INCIDENTS AND AMBER 95TH PERCENTILE**

![Graph showing the correlation between the number of Serious Adverse Incidents and the Amber 95th percentile response time over the period May 2016 to March 2018.](image)

We are also aware that Welsh Ambulance Services have been issued a number of ‘Regulation 28 notices’ between April 2016 and March 2017. A Regulation 28 notices applies where a coroner is under a duty under to make a report to prevent either deaths. Although these notices often state that a single cause cannot be said to have caused a death they have stated that delays could have been a ‘contributory factor’.

The independent board members of Welsh Ambulance Services, concerned at the rise in the number of Serious Adverse Incidents, have undertaken an ‘assurance review’ and found that there was “not just one root cause for each concern”. They found the significant issues to be:

- Handover delays and availability
- Availability of Staff and Welfare
- Call Centre categorisation and investigation process
- Escalation levels and protected resource

We should note that the statement ‘a long time’ is subjective and will have different value to different people. There is no definition that can be used so in this review we use various measures depending on context.

Nevertheless accepting poor experience and the subjectivity of ‘long waits’ one of the purposes of the Review is to understand if the categorisation of Amber is causing harm to patients. It should be acknowledged that the relationship between waiting a long time and attributable harm is complex and uncertain.

To generate this understanding of correlation between potential harm and ‘long waits’ we have worked with a range of organisations across NHS Wales to develop an ‘Integrated Information Environment’ which allows us to digitally trace a patient’s journey across their episode of care and to use clinical and analytical expertise to scrutinise this journey and track interventions and outcomes. The data used to develop the Integrated Information Environment is shown in Figure 24.

---

**FIGURE 24: THE INTEGRATED INFORMATION ENVIRONMENT**

![Diagram showing the components of the Integrated Information Environment](image)

The Integrated Information Environment contains millions of data points and to our knowledge this is the first time in Wales that this has been achieved on this scale or depth. Whilst the analysis within this report focuses on patients presenting to the ambulance service in the Amber category, there are significant opportunities to work in this environment to support developments within the wider health system as currently there is a clear lack of integrated data across the patient journey. The Clinical Prioritisation Assessment Software Group, mentioned earlier in this report, currently uses ambulance service data and clinical expertise to regularly review codes to ensure they are in most appropriate response category. The Integrated Information Environment should now be used by this group to augment this process.

---

**Do long waits cause harm? – Overview**

Some patients will have a poor experience whilst waiting a long time for an ambulance and we have discussed in previous sections how this poor experience can be improved.

We are working with a range of organisations across NHS Wales to develop an ‘Integrated Information Environment’ which allows us to digitally trace a patient’s journey across their episode of care and to use clinical and analytical expertise to scrutinise this journey and track interventions and outcomes. The data used to develop the Integrated Information Environment is shown in Figure 24.
31 Do long waits cause harm? – Outcomes

We have developed a range of indicators that can be used as a proxy measure of harm. We have grouped these to create a cluster of outcome indicators that we have used to explore the following issues:

Waiting for an ambulance
There is a perception that longer waits in the community for an ambulance response has a higher propensity to cause harm.

Waiting in an ambulance
There is a perception that long handover delays outside of hospitals are causing harm to patients.

For each of the areas there is a logical hypothesis that harm is linearly associated with an increase in volume or time. We aim to explore this hypothesis and understand its validity and applicability to the Amber category.

31.1 Waiting for an ambulance

When studying the relationship between response times and patient outcomes, it is important to take into account the influence that the clinical response model has on these time-based outcomes. As the clinical response model is designed to reach those sickest individuals first, then we would expect to see the poorest outcomes for patients responded to the quickest. Therefore, in order to analyse the relationship between response and outcomes in a more pure way, we need to first adjust out the effects of the clinical response model, and this can be done through the use of the codes from the Medical Prioritisation Dispatch System mentioned previously in this report.

As also mentioned earlier, Medical Prioritisation Dispatch System codes are placed in either the Red, Amber 1, Amber 2 or Green category a consequence of which is that some codes are more likely to be clustered within incidents having the quickest response times. Taking average outcomes for each code, we can calculate expected average outcomes for each response time,* and then calculate outcome ratios by dividing the actual average outcomes with their associated expected average outcomes, at each response time point. Figures 26–28 are expressed as these adjusted ratios, with the 100% line representing an outcome which is in line with what would have been expected given the mix of codes.

The proxy outcomes we used for patients waiting for an ambulance in the community.

a. First presenting National Early Warning Score Ratio
b. Conveyance Ratio
c. Admission Ratio
d. Cardiac Arrest Report Form (CARF)
e. Recognition of Life Extinct (ROLE)

*The expected average is a weighted average of the individual MPDS code outcomes, with weights based on the relative frequencies of those MPDS codes.
31.1.1 Total incidents by Response Time

For context Figure 25 shows the distribution of response times for all Amber calls, and it is clear that the majority of these calls are attended to within an hour, and care therefore needs to be taken when assessing the significance of outcomes beyond this time which are likely to subjected to a large degree of statistical error.

31.1.2 First presenting National Early Warning Score Ratio

National Early Warning Score is used across the Ambulance Service and secondary care in Wales. It enables clinicians to calculate and articulate the level of risk of a patient’s physical condition deteriorating in a standardised way.

Figure 26 demonstrates that those responded to within 20 minutes seem to have a higher National Early Warning Score on average than would have been expected, given the mix of Medical Prioritisation Dispatch System codes, but after 20 minutes, it is generally lower. This effect might be down to a combination of factors; contact centre clinicians may be applying clinical discretion over the deployment of the next ambulance, or it could be that for a significant number of patients, their condition improves while they wait for an ambulance.
31.1.3 Conveyance Ratio

Understanding the relationship between conveyance and length of response time may provide an insight into the appropriateness of ambulance prioritisation.

The conveyance ratios shown (Figure 27) are broadly in line with what would have been expected for response times up to around 80 minutes, but there is a noticeable drop-off beyond that point. However, care needs to be taken with regards to the interpretation of data points beyond this response time, due to the relatively small numbers involved.

\[ \text{FIGURE 27: CONVEYANCE RATIO BY RESPONSE TIME} \]

31.1.4 Admission Ratio

Understanding the relationship between response times and the rate of admission from Emergency Departments is a useful indicator of the clinical needs of a patient. Note that the ratio expressed is based on all incidents where an ambulance arrived at the scene, not just those where there was a conveyance to the Emergency Department.

Figure 28 shows that the ratio of patients admitted into hospital is in line with that expected based on the mix of Medical Prioritisation Dispatch System codes, and there seems to be no evidence to show that longer response times have an effect on overall admission rates. However, this is not to say that there might have been individual instances in which a delayed response led to a poorer outcome, as stated earlier in this report.

\[ \text{FIGURE 28: ADMISSION RATIO BY RESPONSE TIME CARDIAC ARREST REPORT FORM} \]
31.1.5
Cardiac Arrest Report Form

Understanding the link between response times and the need for cardiac arrest interventions is an important proxy measure of harm and accuracy of ambulance services prioritisation systems.

One of the ways we can measure this is to look at the number of patients in the Amber category where the ambulance crew document that they undertook an intervention as a result of the patient having a cardiac arrest. We looked at the time taken to respond to these patients compared to other patients.

Although it should be noted that the numbers are small in relation to the overall number of patients in the Amber category.

It is important to note that the cardiac arrest may occur at any point in time whilst the patient is with the ambulance crew.

Due to the very small numbers involved (0.3% of total Amber) it was not appropriate to calculate the adjusted ratios, and therefore, in Figure 29 we compared the response time distributions for Amber patients having had a Cardiac Arrest intervention documented on the ‘Cardiac Arrest Report Form’ against those who did not.

Figure 29 shows that those patients with an element of the Cardiac Arrest Report Form completed were attended to quicker than those without.

<table>
<thead>
<tr>
<th>FIGURE 29: COMPARISON OF RESPONSE TIME DISTRIBUTIONS FOR CARF V NOT CARF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARF</td>
</tr>
<tr>
<td>Avg. response time (mins)</td>
</tr>
<tr>
<td>25th percentile response (mins)</td>
</tr>
<tr>
<td>Median response (mins)</td>
</tr>
<tr>
<td>75th percentile response (mins)</td>
</tr>
<tr>
<td>90th percentile response (mins)</td>
</tr>
</tbody>
</table>

31.1.6
Recognition of Life Extinct

Understanding the link between response times and the Recognition of Life Extinct is an important proxy measure of harm and accuracy of ambulance services prioritisation systems.

Figure 30, due to the very small numbers (0.2% of total Amber), compares the response time distributions for Amber patients who are recognised as life extinct versus those who are not, and shows that the response times were slightly shorter in the Recognition of Life Extinct group.

<table>
<thead>
<tr>
<th>FIGURE 30: COMPARISON OF RESPONSE TIME DISTRIBUTIONS FOR RECOGNITION OF LIFE EXTINCT VERSUS NON RECOGNITION OF LIFE EXTINCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARF</td>
</tr>
<tr>
<td>Avg. response time (mins)</td>
</tr>
<tr>
<td>25th percentile response (mins)</td>
</tr>
<tr>
<td>Median response (mins)</td>
</tr>
<tr>
<td>75th percentile response (mins)</td>
</tr>
<tr>
<td>90th percentile response (mins)</td>
</tr>
</tbody>
</table>

31.1.7
Summary of Outcome Cluster for Waiting for an Ambulance

<table>
<thead>
<tr>
<th>FIGURE 31: WAITING FOR AN AMBULANCE OUTCOME SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDICATOR</td>
</tr>
<tr>
<td>First presenting National Early Warning Score Ratio</td>
</tr>
<tr>
<td>Conveyance Ratio</td>
</tr>
<tr>
<td>Admission Ratio</td>
</tr>
<tr>
<td>Cardiac Arrest Report Form</td>
</tr>
<tr>
<td>Recognition of Life Extinct</td>
</tr>
</tbody>
</table>
31.2 Waiting in an ambulance

It is difficult to gain a true understanding of the relationship between handover delays and patient outcomes, due to the fact that patients who wait in an ambulance are not representative of all patients conveyed to Emergency Departments.

The fact that these patients need to stay in an ambulance with crew members could indicate that their condition is such that they are not well enough to wait in the Emergency Department waiting room.

We focused on the observations taken during the patient’s time within the ambulance such:
- National Early Warning Score
- Pain scores

It should be noted that the numbers involved for this analysis are quite small, due to the current difficulties in identifying and analysing multiple observation records.

31.2.1 Difference between the average First and Last National Early Warning Score during hospital handover delay

Measuring how a patient’s National Early Warning Score is affected during the wait outside a hospital prior to being handed over is important for understanding the impact of waiting on a patient’s clinical condition.

Figure 32 shows the differences between the average first and last National Early Warning Score recorded by the ambulance crew during the handover delay, and for each of the handover wait time bands, the differences were less than zero, denoting that, on average, patients’ scores reduced slightly during their time in the ambulance, as we may expect when being cared for by skilled ambulance and emergency department staff.

![Figure 32: Difference between average first and last National Early Warning Score during hospital handover delay](image-url)
31.2.2 Difference between the average First and Last Pain score during hospital handover delay

Measuring how a patient’s pain trend is affected during the wait outside a hospital prior to being handed over is important for understanding the impact of waiting on a patient’s clinical condition. Figure 33 shows that the average pain scores reduced between the first set of observations outside the hospital and the last set of observations before the handover.

### FIGURE 33: DIFFERENCE BETWEEN FIRST AND LAST PAIN SCORES DURING HOSPITAL HANDOVER DELAY

<table>
<thead>
<tr>
<th>Handover Wait</th>
<th>Number of Incidents</th>
<th>Avg. difference between First and Last PAIN during Handover</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-14 min</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>15-29 min</td>
<td>21</td>
<td>-0.14</td>
</tr>
<tr>
<td>30-44 min</td>
<td>47</td>
<td>-0.19</td>
</tr>
<tr>
<td>45-59 min</td>
<td>136</td>
<td>-0.29</td>
</tr>
<tr>
<td>1-1.5 hrs</td>
<td>662</td>
<td>-0.32</td>
</tr>
<tr>
<td>1.5-2 hrs</td>
<td>767</td>
<td>-0.39</td>
</tr>
<tr>
<td>2-2.5 hrs</td>
<td>587</td>
<td>-0.22</td>
</tr>
<tr>
<td>2.5-3 hrs</td>
<td>416</td>
<td>-0.25</td>
</tr>
<tr>
<td>3-3.5 hrs</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>3.5-4 hrs</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>4+ hrs</td>
<td>296</td>
<td></td>
</tr>
</tbody>
</table>

31.2.3 Summary of Outcome Cluster for Waiting in an Ambulance

![Figure 34: Waiting in an Ambulance Outcome Summary](image)

**INDICATOR**

- **Difference between the average First and Last National Early Warning Score during hospital handover delay**
  - Finding: On average patients’ National Early Warning Score reduced during their time in the ambulance, as we may expect when being cared for by skilled ambulance staff and ED.

- **Difference between the average First and Last Pain score during hospital handover delay**
  - Finding: On average pain scores reduced between the first set of observations outside the hospital and the last set of observations before the handover as we may expect when being cared for by skilled ambulance and ED staff.

32 Do long waits cause harm? – Summary

It is possible that some patients may in the longer term exhibit poorer health outcomes due to their long wait for a response, however using the data available to us within the Integrated Information Environment there appears to be no direct relationship between long waits for an ambulance response and poorer outcomes for the majority of patients.

We believe that work should continue, in order to understand the relationship between harm and response times, especially for specific conditions, and that additional information is required to augment the Integrated Information Environment such as tissue viability assessments and emergency department interventions.
33 FINDINGS FOR DELIVERING AMBER

- Funding for ambulance services has increased
- The ambulance service does not always deliver sufficient resources to meet demand
- The time ambulances are waiting outside hospitals has increased
- Sickness levels remain high
- Emotional and psychological wellbeing of staff is important
- Call handlers should be supported, especially during periods of increased activity
- Resource availability is the foremost factor in providing an appropriate response

- A lack of resource availability can result in longer waits for some patients
- There has been an increase in the number of Serious Adverse Incidents reported
- The clinical response model is a valid and safe way of delivering ambulance services
- Members of the public support the principles of the clinical model
- The length of time you wait for an ambulance response in the Amber category does not appear to correlate with worse outcomes

Improving Amber

This section considers the findings of the Amber Review and highlights opportunities for improvement.
We have delivered in this Report a comprehensive assessment and narrative that describes the Amber category in detail. Overall we find that the principle of the clinical response model, of getting to the sickest patient first and getting the right response to the patient is supported by both the public and staff.

We have found instances of good practice as well as opportunities for improvement to the quality of care, public understanding or ambulance response for patients whose conditions have been categorised as amber.

The Welsh Ambulance Service is experiencing an increase in demand on its services, and the service is contributing in mitigating the impact of this demand on the wider health services.

There needs to be a better understanding of why demand is increasing, the role of other services in driving this demand and how the ambulance service can further contribute to the management of this demand as part of the wider health system.

We have developed and used an innovative Integrated Information Environment to examine any possible correlation between response times, waiting outside a hospital and poorer outcome. We are reassured that this information demonstrated that the Welsh Ambulance Service is effectively prioritising patients and getting to the sickest patients first. We have shown that when patients are waiting outside of a hospital for admission they do not, on the whole, deteriorate or have worsening pain.

We believe that this Integrated Information Environment will provide stakeholders with a rich resource to enable a greater understanding of the key factors involved in pre-hospital unscheduled care and will enable more effective commissioning and delivery of services.

The link between Serious Adverse Incidents and Amber category is complex, and a clearer understanding of the root causes of these incidents need to be established.

We have found that there are a number of patients in the amber category that are waiting too long to receive a response. The overriding factor in improving this is the availability of ambulance resources and not the categorisation of these patients as Amber.

In order to avoid the combination of factors that were seen last winter, the ambulance service and the wider NHS must ensure that it takes every opportunity to maximise the availability and efficiency of resources in order that the patients of Wales receive the highest quality and timely ambulance response.
FINDINGS
The Review has found:

Explaining Amber
• The prioritisation of calls is complex
• There is a range of different responses depending on the patient’s condition.
• Ambulance staff felt frustrated by the restrictive nature of the prioritisation system
• The public felt that it was important to get the best response for their condition even if this was not the quickest

Exploring Amber
• There was increased demand in the Amber category
• Ambulance staff felt that expanding the numbers and roles of clinicians in the control room was essential
• Receiving a quick ambulance response but ensuring this is the right response for your condition is important to the public
• Further work is required to explore the relationship between cancellations and re-categorisations and ambulance response
• Further work is required to explore the relationship between hoax calls, refusals and ambulance response
• The Public support ambulance services doing as much as possible to avoid the need for them to go to hospital
• Staff require more information on alternative services
• Measures of quality is as important as response times
• Measurement of the ambulance service should be refined to reflect the whole patient journey
• Measures should be developed in partnership with patients
• Members of the public wish to be supported and be better informed when making a 999 call
• More patients in the Amber category are having their incident resolved or closed over the phone

Delivering Amber
• Funding for ambulance services has increased
• The ambulance service does not always deliver sufficient resources to meet demand
• The time ambulances are waiting outside hospitals has increased
• Sickness levels remain high
• Emotional and psychological wellbeing of staff is important
• Call handlers should be supported, especially during periods of increased activity
• Resource availability is the foremost factor in providing an appropriate response
• A lack of resource availability can result in longer waits for some patients
• There has been an increase in the number of Serious Adverse Incidents reported
• The clinical response model is a valid and safe way of delivering ambulance services
• Members of the public support the principles of the clinical model
• The length of time you wait for an ambulance response in the Amber category, does not appear to correlate with worse outcomes

In light of these findings the Review recommended the following:
• Measures of quality and response time should continue to be published although they need to reflect the patient’s whole episode of care
• Measures should be developed in collaboration with patients
• There should be a programme of engagement to ensure clarity on the role of emergency ambulance services and how calls are prioritised and categorised
• NHS services in Wales must improve and simplify their offering of alternative services
• There must be sufficient numbers of clinicians in the contact centres to ensure patients receive the most appropriate level of care
• The ambulance service must ensure that planned resources are sufficient to meet expected demand
• The ambulance service must deliver against it planned resource
• Health Boards must take appropriate actions to ensure that lost hours for ambulances outside hospitals reduce
• The longest waits for patients in the community must be reduced
It also recommends that further work is required as follows:

- Understand the change in activity and explore opportunities for improvement in:
  - number of calls
  - patient cancellations
  - re-categorisation
  - refusals of treatment and transportation
- The role of the clinical support desk within the wider unscheduled care system should be reviewed
- A review should be undertaken by the Chief Ambulance Services Commissioner to support the Welsh Ambulance Service to maximise front line staff availability
- There should be a review of the Serious Adverse Incidents reported and Regulation 28 notices received over the most recent winter to ensure lessons are learnt and shared
- A review should be undertaken by the Chief Ambulance Services Commissioner to support Health Boards to minimise lost hours to handover delay
- The Chief Ambulance Services Commissioner will develop and implement a long wait reduction programme

References


26 http://www.was-tr.wales.nhs.uk/assets/documents/c76ddce2-8f3f-4761-81ca-cbc1f4b349c06317.pdf


32 http://www.wales.nhs.uk/easc/about-us


36 O’Ree G. (2014). What do we know about why EUC demand has increased? Sheffield: University of Sheffield.


PART D: IMPROVING AMBER

50 Kings fund (2010). Approaches to Demand Management: Commissioning In a Cold Climate. Kings fund. London.
56 O’Keeffe, C. (2014). What do we know about why EUC demand has increased? Sheffield: University of Sheffield.
65 http://www.wales.nhs.uk/ezec/ambulance-quality-indicators
Appendix

Appendix I

Appendix I Introduction

The 2016/17 independent review of the clinical response model pilot, undertaken by the Public and Corporate Economic Consultants (PACEC), made a number of recommendations for further improvement to the clinical response model, including a recommendation to review the call categories outside of ‘Red’.

At the Emergency Ambulance Services Committee (EASC) of 28 March 2017, the committee members and Chief Ambulance Services Commissioner (CASC) endorsed the PACEC review and agreed to address the recommendations. A call category review was undertaken by the WAST Clinical Prioritisation Assessment Software Group in 2017/18 and ongoing review processes are in place.

However, it is recognised by the CASC, that the implementation of the clinical model is more nuanced than the allocation of clinical codes to response categories, and that there is significant interest across the political and public spectrum in the quality and safety of the ambulance response, particularly for patients whose clinical condition places them within the Amber category.

The 2018/19 EASC Integrated Medium Term Plan (IMTP) approved by the committee on the 27 March 2018, commits the CASC to undertake an ‘Amber review’ to consider these wider issues. The CASC has directed the EASC clinical team to lead a review addressing the information, issues and concerns surrounding the Amber call category that will also consider patient expectation and experience, use of alternative responses and pathways, ambulance handover times and system risk.

Accountability and governance

The Chief Ambulance Services Commissioner will function as the reviews sponsoring officer. The review will be led by experienced clinicians, Mr Shane Mills, Director of Quality and Patient Experience and Mr Ross Whitehead, Assistant Chief Ambulance Services Commissioner.

The review team will:

- Report formally to the Emergency Ambulance Services Committee on a quarterly basis.
- Bring to the Chief Ambulance Services Commissioners attention any significant matters, and seek decisions/guidance where necessary.

Scope

The review programme covers four general areas in respect of calls within the Amber category: In considering these questions the review team will ensure that the overarching aim of the clinical response model of ensuring that the sickest patients receive the quickest response and that the right response is sent the first time are used as the benchmark for assessing success.

Context – What is the Amber Category?

This question will explore:

- What conditions does it contain?
- How does it compare to similar categories elsewhere such as England, Scotland and internationally?
- How is this category prioritised?
- How is this category responded to?

Activity – What has been the workload in this Category over the last 2 years?

This question will explore:

- What has been the activity in this category for the last 2 years?
- How does this compare with similar activity elsewhere such as England, Scotland and internationally?

Performance/Outcomes – Is there a problem with the Amber Category?

This question will explore:

- What performance/outcomes have been achieved over the last 2 years?
- How does this compare to similar categories elsewhere?
- What is the relationship between the ambulance service performance and wider system pressures such as hospital handover delays? (including SAI’s, Winter etc)
- How does the achieved performance compare with extant clinical guidelines?

Improvement – What can be done differently for this category?

This question will explore:

- Are the right conditions/patients in this category?
- Can we respond differently to parts or all of this category with existing or new services?
- Are we commissioning services to respond to this category effectively?

Guiding principles

In undertaking this review, the review team will be guided by the following principles. It will be guided by the principles of Prudent Healthcare and the ‘quadruple aim’:

- Improve population health and wellbeing.
- Improve the experience and quality of care of individuals and families.
- Enrich the wellbeing, capability and engagement of the workforce.
- Increase the value achieved from funding through improvement, innovation, use of best practice and eliminating waste.
- Encourage a whole system approach to the management of citizens in the Amber category, maintaining a focus on people, their outcomes and what matters to them.
- Ensure the clinical prioritisation of calls to emergency ambulance service is continued.
Stakeholders
The review will ensure wide engagement with relevant stakeholders, including:

- National Assembly Members
- Welsh Government
- Health Boards Executives and Clinical Leaders
- WAST Executives and Clinical Leaders
- Relevant voluntary agencies/groups (e.g. Stroke Association)
- Professional colleges (College of Paramedics, Royal College of Emergency Medicine, Royal College of General Practitioners)
- Staff representatives
- Clinical Networks

The review team are engaged with the Picker Institute to undertake staff and citizen engagement activities.

Support and dependencies
The Review team will be working at pace to address the Areas covered in section 3. The review team will in particular require dedicated support from:

- National Collaborative Commissioning Unit (for example Clinical Director of Unscheduled Care, administrative support)
- Subject area experts (for example WAST call takers, WAST clinicians, ED clinicians)
- Data and information specialists (for example NWIS, WAST, HBs)

The review team will be dependent on information providers for timely responses to information requests.

The review team will contact specific agencies outlining the required support week commencing 16 April 2018.

The review team will require access to funding, estimated at £72,000, to support research, engagement and communication activities.

Review
The review team will establish an expert reference group to provide independent peer review and oversight of the programme. A broad membership of experts will be drawn from across NHS Wales, academic and other institutions.

Methodology followed by the Amber Review

1 Methodology
The broad nature of this review required a mixed methods approach. The relevant methodology for each distinct area that the review covered is outlined below.

1.1 Context
This was a desk review that traced the history of the implementation of the clinical model in WAST and the background to the commencement of the commissioning of WAST and the establishment of EASC.

1.2 Comparisons with other countries
A desk review of library searches, public information searches and requested information to compare the model and activity in Wales with that of other countries.

1.3 Data sources and analysis
A two year time period for the 31 March 2016 to 1 April 2018 was agreed. The main data source for activity was provided by the Welsh Ambulance Services Informatics team based on the regular information provided to the Clinical Prioritisation Software Assessment Group. Performance information was derived from publicly available information from StatsWales, Ambulance Quality Indicators or Welsh Ambulance board reports.

The Review Team also appointed a dedicated and experienced senior data analyst as the Amber Review data lead to ensure robust quantitative analysis.

1.3.1 Data Linking
A novel approach to using linked data across a patient’s unscheduled care journey was developed. The full methodology for the establishment of this data set is provided in Technical Appendix 1. A range of outcome cluster in dictators were developed to explore the impact of waiting on patients.

1.4 Management Engagement
Five individual interviews were undertaken by the Picker Institute with senior operational and clinical managers within the Welsh Ambulance Service. A topic guide was developed to frame the interview and a narrative summary of the discussions produced.

1.5 Staff engagement
Three focus groups were undertaken by the Picker Institute across Wales with a variety of operational staff. A topic guide was developed from the themes identified by the management interviews and a narrative summary of the discussions produced.

1.6 Public Engagement
A survey was developed by the Picker Institute to explore public perceptions and expectation of ambulance services for an urgent clinical condition. The survey was facilitated by YouGov and 1000 responses were received. Analysis of the findings and demographics of the respondents was then produced.
Appendix III

Expert Reference Group Invitees

Stephen Clinton  
Assistant Director of Operations (Clinical Contact Centers)  
Welsh Ambulance Services NHS Trust

Shane Mills  
Director of Quality and Patient Experience  
National Collaborative Commissioning Unit

Ross Whitehead  
Assistant Chief Ambulance Services Commissioner for The Emergency Ambulance Services Committee

Chris White  
Interim Chief Operating Officer  
ABM UHB

Jonathan Whelan  
Assistant Medical Director  
Welsh Ambulance Service NHS Trust

Paresh Wankhade  
Professor of Leadership and Management & Director of Research, Edge Hill University Business School

Grayham Mclean  
Unscheduled Care Lead, Executive Department, Welsh Ambulance Service NHS Trust

Jan Thomas  
Assistant Chief Operating Officer  
Corporate Services, ABM UHB

Jo Mower  
Clinical Director National Programme Unscheduled Care  
National Collaborative Commissioning Unit

Andy Swinburn  
Assistant Director of Paramedicine  
Welsh Ambulance Services NHS Trust
Technical Appendix: 1

Methodology for linking Welsh Ambulance Services Trust data to Emergency Department data

AUTHORED BY:
Dr Gareth John
NHS Wales Information Service

Data Sharing
A data-sharing agreement was signed by WAST and the NHS Wales Informatics Service (NWIS), allowing NWIS to access the ambulance Computer Aided Dispatch (CAD) and Patient Clinical Record (PCR) data. This agreement applied to data collected during the period 1st April 2016 to 31st March 2018, coinciding with the study period.

Computer Aided Dispatch (CAD) data
Each ambulance incident can result in a dispatch of any number of vehicles, with associated CAD records being generated for each of these vehicle journeys. These records contain an incident identifier plus information about the nature of the incident and the MPDS dispatch code allocated to that incident (see below for details of MPDS), the type of vehicle dispatched, the location of the incident, the key date/time points along the ambulance call cycle (e.g. time of call, time dispatch code established, time at scene, time left scene, time at hospital, time of handover), and the destination hospital.

In terms of person demographics, only the age and gender of the patient are recorded within the CAD record, although only one set of person demographics are provided per incident, regardless of the number of patients or conveyances involved in that incident. Therefore, within the record, it can appear that a 36 year old male was conveyed to hospital in a particular ambulance, whereas in fact it was a 30 year old female who was involved as part of the same incident, and the 36 year old male may have been separately conveyed to hospital in another vehicle, or may not have been conveyed at all.

Any vehicle can be “stood down” at any point in the journey, and these manifest themselves as “stop reasons” or “stood down” flags in the CAD dataset. In many cases, the vehicle which arrives first at the scene of an incident is not the one that subsequently conveys the patient to hospital. For example, a Rapid Response Vehicle (RRV) will often be the first vehicle on scene, but an Emergency Ambulance may subsequently convey the patient to hospital.

For the study period, the CAD data contained information relating to 798,595 distinct incidents, 432,589 (54.2%) of which involved the conveyance of at least one patient to one of the major EDs in Wales.
Patient Clinical Record (PCR)

The vehicle crew can complete any number of PCR forms for patients that they attend to, and these can be linked to the associated CAD records using unique PCR form identifiers. The PCR contains personally identifiable information (PII) such as forename, surname, date of birth, gender and postcode of residence, from which it is possible to derive NHS numbers using the standard NWIS/SAIL matching algorithm, which uses both exact and probabilistic matching. The derived NHS numbers can then be used to facilitate the onward linkage of records to other health and mortality data, for both those sets of patients conveyed to hospital and for those treated at the scene or left at home.

The remainder of the PCR record is composed of detailed clinical information, including the six physiological findings and one observation that make up the National Early Warning Score (NEWS), which is used as a proxy measure for the level of acute illness. There are also pain scores and specific sections relating to the particular nature of that incident, e.g. Road Traffic Collisions and Cardiac Arrest. For the study period, PCRs were found for 526,048 incidents (67%), of which 454,258 were able to be traced to an NHS Number (86.3%). For those 432,589 incidents involving a conveyance to one of the major EDs in Wales, PCRs were found for 313,952 incidents (73%), and of these, NHS numbers were able to be traced for 271,976 (86.6%). A visual representation of the above numbers is shown in Figure 35 below.

Emergency Department (ED) data

The ED dataset contains demographic, administrative and clinical information relating to each attendance at an emergency department in Wales. The demographic fields include PII fields such as NHS number, forename, surname, date of birth, gender and postcode of residence, and the administrative data items include the name/code of the hospital, the patient’s mode of arrival, the ambulance incident number, key time points such as the administrative arrival date/time (the ED check-in time) and administrative end date/time, and the outcome of the attendance.

Due to considerations of data quality and availability, the scope of the linkage exercise was restricted to just the 13 major emergency departments in Wales (Minor Injury Units (MIU) excluded), and for the study period, there were 418,420 attendances reported at these EDs, where the reported mode of arrival was either ambulance or helicopter, or where an ambulance incident number was recorded.

The main focus for this work was the follow-up of those patients conveyed by ambulance to an ED, in order to determine a range of outcome information, based on events within the ED and beyond.

As previously mentioned, there were 432,589 distinct ambulance incidents in which at least one patient was conveyed to one of these major EDs, accounting for 450,462 ambulance journeys (and associated CAD records). However, with the ED datasets reporting a lower number of reported ED attendances (418,420), there was an immediate issue in terms of determining the true numbers of ambulance arrivals at the ED. One possible reason given for the higher numbers on the ambulance side was that certain patients might circumvent the ED, and be taken directly to specialist units (e.g. cardiac), although further work is required to fully understand these differences.

Generating pairs of possible matches

The first stage of the matching algorithm was to extract pairs of records from the CAD and ED datasets which might be a possible match. Pairs of records where the hospital name (or code) matched and where the Administrative Arrival Date/Time (ED) was within 1 hour (+) of the Hospital Arrival Date/Time (CAD) were extracted into a table “Possible Matches”. This initial restriction placed on the number of pairs of records to consider for matching (known in matching parlance as “blocking rules”), would reduce the subsequent computational effort of the matching process. This first step generated

**FIGURE 35:**

<table>
<thead>
<tr>
<th>Incidents (Total = 798,595)</th>
<th>Patient conveyed to Major ED (Total = 432,589)</th>
</tr>
</thead>
<tbody>
<tr>
<td>118,637</td>
<td>41,976</td>
</tr>
<tr>
<td>271,976</td>
<td>182,282</td>
</tr>
<tr>
<td>153,910</td>
<td>29,414</td>
</tr>
<tr>
<td>118,637</td>
<td>41,976</td>
</tr>
<tr>
<td>271,976</td>
<td>182,282</td>
</tr>
<tr>
<td>153,910</td>
<td>29,414</td>
</tr>
</tbody>
</table>

Linkage of conveyance ambulance incidents to ED records
2,365,407 pairs of possibly matching records, with possible matches found for 449,303 (99.7%) of the CAD records and 416,535 (99.5%) of the ED records.

Linking CAD to ED records (deterministic matching)

For 276,036 of the incidents where at least one patient was conveyed to a major ED, an NHS number was able to be derived (as previously described under the PCR section), and therefore we defined our exact (deterministic) matches to be those “Possible Matches” pairs where the NHS numbers from the PCR/CAD matched the associated NHS number in the ED dataset, and also where this match was unique. This resulted in 222,677 of pairs of exact match records, which were loaded into the table “Highly Likely”, leaving 227,785 CAD and 195,743 ED records as still unmatched and needing to be run through a probabilistic matching algorithm.

Linking CAD to ED records (probabilistic)

For the remaining unmatched CAD and ED pairs in the “Possible matches” table, probabilistic matching was attempted, with matching scores based on an application of Bayes Theorem, with the prior log odds of a match on the average number of records (from our “Possible Match” table) by hospital, the time of day of the arrival (2 hour periods) and the day of the week.

**Figure 36** shows how the average numbers of ambulance arrivals at ED varies according to the time of day & day of week (top table), and by individual ED (bottom table). The resulting prior log odds range from -2.28 for arrivals at the University Hospital of Wales between 14:00 and 15:59 on a Monday (the busiest period) to -0.41 for arrivals at Bronglais General Hospital between 06:00 and 07:59 on a Tuesday (the quietest period).

| Figure 36: Average Ambulance arrivals per hour at EDs in Wales |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Time             | Mon             | Tue             | Wed             | Thu             | Fri             | Sat             | Sun             |
| 00:00 - 01:59    | 36.1            | 35.5            | 35.7            | 36.4            | 36.4            | 38.7            | 41.6            |
| 02:00 - 03:59    | 34.4            | 33.1            | 32.3            | 33.4            | 33.2            | 37.0            | 40.0            |
| 04:00 - 05:59    | 30.0            | 29.1            | 29.2            | 30.0            | 29.6            | 31.7            | 34.1            |
| 06:00 - 07:59    | 27.4            | 25.9            | 26.3            | 25.8            | 26.5            | 27.1            | 27.9            |
| 08:00 - 09:59    | 38.7            | 38.2            | 37.7            | 36.8            | 37.8            | 36.5            | 36.7            |
| 10:00 - 11:59    | 44.8            | 43.8            | 43.5            | 43.7            | 44.0            | 43.3            | 43.0            |
| 12:00 - 13:59    | 46.1            | 44.7            | 44.3            | 44.9            | 44.2            | 43.9            | 44.8            |
| 14:00 - 15:59    | 49.4            | 48.2            | 48.2            | 48.3            | 47.8            | 47.8            | 48.7            |
| 16:00 - 17:59    | 48.2            | 47.4            | 46.9            | 47.6            | 47.6            | 48.0            | 47.3            |
| 18:00 - 19:59    | 43.0            | 42.2            | 40.7            | 41.8            | 42.7            | 42.2            | 42.1            |
| 20:00 - 21:59    | 44.6            | 44.2            | 44.4            | 44.6            | 44.6            | 44.8            | 44.8            |
| 22:00 - 23:59    | 40.8            | 41.5            | 40.9            | 41.8            | 42.6            | 44.2            | 41.6            |

**POSTERIOR LOG ODDS OF A MATCH**

For the prior log odds of a match in our case, we took into consideration the fact that arrival rates varied by hospital, the time of the day and the day of the week. Based on the previously mentioned blocking rules which were used to generate the “Possible matches” table, we would have expected to generate fewer pairs of “possibly matching” records for those patients arriving at an ED at 1am in a smaller ED, compared to 10am in a larger ED. Therefore, we based our prior log odds on the average number of pairs of records (from our “Possible Match” table) by hospital, the time of day of the arrival (2 hour periods) and the day of the week.

**Figure 36** shows how the average numbers of ambulance arrivals at ED varies according to the time of day & day of week (top table), and by individual ED (bottom table). The resulting prior log odds range from -2.28 for arrivals at the University Hospital of Wales between 14:00 and 15:59 on a Monday (the busiest period) to -0.41 for arrivals at Bronglais General Hospital between 06:00 and 07:59 on a Tuesday (the quietest period).**

**Average Ambulance arrivals per ED per week**

- **Bronglais General Hospital**: 158.1
- **Glangwili General Hospital**: 235.1
- **Morniston Hospital**: 341.1
- **Nevill Hall Hospital**: 218.1
- **Prince Charles Hospital**: 257.3
- **Princess of Wales Hospital**: 214.6
- **Royal Gwent Hospital**: 309.0
- **The Royal Glamorgan Hospital**: 244.0
- **University Hospital of Wales**: 367.5
- **Wrexham Maelor Hospital**: 188.9
- **Wrecsam Maelor Hospital**: 267.5
- **Ysbyty Glan Clwyd**: 302.5
- **Ysbyty Gwynedd**: 253.4

*e.g. if there were on average 20 attendances at Hospital A between 8am and 10am on a Thursday, there would likely to be (on average) 20 possible matching ED records for every CAD arrival (20 “Possible matches” pairs of records) at Hospital A between 8am-10am on a Thursday. However, only one (or possibly none) out of these possible pairs of records will be the correct matching pair and so the prior odds of us selecting the correct matching pair from the table (at random) would be 19:1.

**This means that we would automatically be more confident that a pairs of records in our “possible matches” table would be a true match for the “Bronglais General Hospital between 06:00 and 07:59 on a Tuesday” pairing than the “University Hospital of Wales between 14:00 and 15:59 on a Monday” pairing."
In order to calculate the LLRs, comparisons were made between the CAD and ED records, with a focus on those attributes that were either common to both records, or where attributes were in some way associated. The attributes compared were:

- Age of the patient (CAD vs ED)
- Gender of the patient (CAD vs ED)
- Incident location (CAD) vs patient’s place of residence (ED)
- Ambulance arrival time at the hospital (CAD) vs the administrative arrival time (or check-in time) at ED
- Ambulance incident number (CAD vs ED)

Labels were assigned to describe the comparison of each of the CAD/ED attribute pairings compared, as shown below.

### a. Age of patient

Although age is a very obvious attribute to compare, as previously mentioned, only one set of demographics are assigned to an incident, regardless of the number of patients conveyed to hospital. This might be an issue in the case of a road traffic collision involving multiple casualties, but should be less of an issue in the case of medical emergencies. The labels use for age comparison are as follows:

- **i. Same age**
- **ii. 1-year difference in age**
- **iii. 2-year difference in age**
- **iv. 3 or more year difference in age**

### b. Gender of patient

Gender is another obvious and direct comparison, although note that the same issues covered above for the age of patient, also apply to gender. The labels used are as follows:

- **i. Same Gender**
- **ii. Different gender**

### c. Proximity of incident location to patient’s place of residence

A large proportion of ambulance incidents take place at or near a patient’s place of residence, and so for the matching process, different measures of proximity were defined. The first set were based on geographic area codes (e.g. postcodes, and census geographies), and the second set used the crow-fly distance between the two locations, which mitigated against some of the issues associated with geography-based measures, e.g. where the distance between two locations is less than 1km, but those two locations are on either side of a geographic border. The labels used are as follows:

- **i. Postcode match**
- **ii. Census output area match**
- **iii. Lower super output area match**
- **iv. No match on geographic area**

### d. Time difference between the ambulance arrival at the hospital and the ED check-in

The comparison between the time of arrival of the ambulance at the hospital (CAD) and the administrative arrival time or check-in time (ED) is already part of the blocking rule used to generate the list of possible matches, and as a result, the time of arrival contributes to the prior log odds of a match. However, this comparison is based on smaller time difference bands.

Note that although patients can wait in the back of an ambulance, this should not delay the time of check-in.

The labels used relate to the following time differences:

- **i. 1 and 4 minutes before Vehicle at Hospital time (CAD)**
- **ii. 4 minutes before or more than 36 minutes after Vehicle at Hospital time (CAD)**
- **iii. 25 and 36 minutes after Vehicle at Hospital time (CAD)**
- **iv. 9 to 16 minutes after Vehicle at Hospital time (CAD)**
- **v. Over 16km**

### e. Ambulance Incident Number

Ambulance incident numbers are recorded in both the CAD and ED data sets, and for most of the study period, they comprised of a one letter prefix (C, N or P), followed by 7 digits. Subsequent changes to ambulance dispatching system removed the need for these prefixes, at least from the point of view of creating unique incident numbers, although this was not obviously reflected in either the ambulance or ED datasets provided. In general, the ambulance data received was consistent, in that it retained the original one letter prefix and 7-digit format throughout, but there was huge variation in the formatting and completeness of the ambulance incident number in the ED dataset of the study...
period. Some of these formatting issues were easier to deal with than others, and these are reflected in the labels below, but there were other problems which were more difficult to overcome, for example where hospital systems started to truncate the rightmost 1 or 2 characters of the incident number.

The labelling of the different possible scenarios was as follows:

i. Label A
Submitted Ambulance Incident Number (ED) formatted as Annnnnn
AND
Incident ID (CAD) = Ambulance Incident Number (ED)

ii. Label B
Submitted Ambulance Incident Number (ED) formatted as nnmmnn
AND
Incident ID (CAD) with prefix removed = Ambulance Incident Number (ED)

iii. Label C
Submitted Ambulance Incident Number (ED) formatted as nnnmmnn
AND
Rightmost 6 characters of Incident ID (CAD) = Rightmost 6 characters of Ambulance Incident Number (ED)

iv. Label D
Submitted Ambulance Incident Number (ED) formatted as nnnnnnn
AND
Rightmost 7 characters of Incident ID (CAD) = Rightmost 7 characters of Ambulance Incident Number (ED)

v. Label E
Submitted Ambulance Incident Number (ED) formatted as nnmmnnn
AND
Rightmost 7 characters of Incident ID (CAD) = Rightmost 7 characters of Ambulance Incident Number (ED)

vi. Label F
Submitted Ambulance Incident Number (ED) formatted as nnnmnnn OR nnnnnnn OR nnnnnnn
AND
None of the above matching combinations are satisfied

Having assigned labels to each of these attribute comparisons, the next task is to assign associated log likelihood ratios (LLRs) to these labels. The formula for the LLR is as follows:

\[
\text{LOG LIKELIHOOD RATIO} = \text{LOG} \left( \frac{\text{PROB (LABEL | RECORDS ARE A TRUE MATCH)}}{\text{PROB (LABEL | RECORDS ARE NOT A TRUE MATCH)}} \right)
\]

In plain English, the numerator here represents the probability of a particular label, given that the pair of records were a true match. Using age of patient as an example, this could be the probability of the label “same age”, given that the pair of records were a true match. We would expect this probability to be very high (close to 1), but data is not always perfect, and so it could be that in the high pressure and often chaotic environment within which ambulance crews operate, they occasionally get the age wrong by one or two years (label = “1-year difference in age”) or “2-year difference in age”). The key to probabilistic matching is that it does not necessarily rule out pairs of records with these differences. Instead, it tries to quantify the relative likelihood of these labels existing in true matches compared to non-matches. The denominator represents the distribution of labels in pairs of records deemed to be non-matches.

Using the probability of a particular label, given that the pair of records were a true match. We would expect this probability to be very high (close to 1), but data is not always perfect, and so it could be that in the high pressure and often chaotic environment within which ambulance crews operate, they occasionally get the age wrong by one or two years (label = “1-year difference in age”) or “2-year difference in age”). The key to probabilistic matching is that it does not necessarily rule out pairs of records with these differences. Instead, it tries to quantify the relative likelihood of these labels existing in true matches compared to non-matches. The denominator represents the distribution of labels in pairs of records deemed to be non-matches.

We can elicit the numerator probabilities by analysing pairs of records that we know to represent correct matches (from our “Highly Likely” table). We can also generate a table containing non-matching pairs of records, by taking those pairs of records from the “possible matches” table, which we subsequently know could not have been true matches because the true matching pair was one of our “highly likely” matches. We then elicited the denominator probabilities by analysing these pairs of records.

**Figures 37 to 44 show the distribution of labels for “highly likely” pairs of matches compared to non-matching pairs, for age, gender, geography/crow-fly distance, and the time from ambulance arrival to ED check-in.**

Due to the aforementioned complexities associated with the comparison of ambulance incident numbers, Figure 42 shows the distributions of labels split by each of the 6 Health Boards (HBs) that have a major ED. These are Aneurin Bevan (AB), Abertawe Bro Morgannwg University (ABMU), Betsi Cadwaladr University (BCU), Cardiff & Vale (C&V), Cwm Taf (CT) and Hywel Dda (HD).

All the associated LLRs across each attribute and label are shown in Figures 43 and 44, with the latter showing the ambulance incident number labels by health board and hospital.

For the comparison of patient age, Figure 37 shows that the label “same age” is much more prevalent in the “highly likely” pairs than the non-matching pairs (74.8% v 13%) which is reflected in a likelihood ratio of 55.4 and an associated log likelihood ratio (LLR) of 4.0, as shown in Figure 43. The “1-year age difference” label also scores positively (LLRs = 1.7) and even though the “2-year age difference” has a negative score (LLR = -0.4), the penalty is not as high as for the “3+ years age difference” label (LLR = -2.8).

In all cases, a positively-valued LLR increases our confidence in a match but a negatively-valued LLR decreases our confidence in a match.
Figures 38 and 43 show distributions and associated LLRs for patient gender with and LLR of 2.0 for “same gender” and ~ 0.0 for “different gender”, which is almost exactly as would be expected, given that we would only expect a very number of our “highly likely” matches to have a mismatch on gender, and we would expect our non-matches to be evenly split between males and females.

The distributions and associated LLRs for the comparison of the geographic areas are shown in Figures 39 and 41 respectively, with “same postcode” receiving an LLR of 6.6, and “census output area match” and “lower super output area match” also receiving high LLR scores of 4.3 and 2.8 respectively. Lower down the table, it can be seen that the label “no match on geographic area” earns a LLR of -1.35.

Figures 40 and 43 shows the information for crow-fly distances, and living within 1km of the incident location gains a LLR score of 3.5. However, all distances greater than 1km (including the >4km band) are more prevalent in the non-matches, which on first reading is surprising, but it should be remembered that our earlier blocking rule stipulated that all possible pairs of CAD/ED matches had to have a match on the hospital, and therefore, it is more likely that the incident locations and places of resident are both relatively close to that hospital, thus reducing the expected range of our crow-fly distances.

Note that only one LLR should be used to cover both the proximity between the location of incident and the patient’s place of residence (due to the previously mentioned constraint of having independent LLRs, where possible), and so we simply choose the highest LLR from the geographic area and crow-fly distances.

Figures 41 and 43 show that the time from ambulance arrival to ED check-in was most likely to be between 4 and 9 minutes for the “highly likely” matches (LLR = 2.4), with the time bands either side also scoring highly (LLR for 1-4 minutes = 2.1, LLR for 9-16 minutes = 1.5).

Finally, based on the information in Figures 42 and 44, it is clear that different hospitals “favour” different formats of ambulance incident number, and LLRs vary significantly between labels and hospitals. Label A scores highly across the board, which we would expect, given that it is the only label which indicates a match on a pair of correctly formatted ambulance incident numbers. Label B (same as label A but with the character prefix missing from the ED ambulance incident number) also scores highly for most hospitals. It is also noticeable how the level of confidence in match varies by hospital, even for the same label. For example, label D in Royal Gwent Hospital has a LLR of 5.9, compared with 2.5 for Withybush General Hospital. In fact, the LLRs for hospitals in the Hywel Dda health board (HD HB) are generally lower than for other health boards, with the right hand truncation of the ambulance incident numbers in the ED systems being a particular problem.
**FIGURE 39: DISTRIBUTION OF GEOGRAPHIC LABELS FOR “HIGHLY LIKELY” MATCHES VERSUS NON-MATCHES**

<table>
<thead>
<tr>
<th></th>
<th>Postcode Match</th>
<th>Census output area match</th>
<th>Lower super output area match</th>
<th>No match on geographic area</th>
<th>Unknown geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Likely Matches</td>
<td>123,997</td>
<td>18,346</td>
<td>18,725</td>
<td>55,466</td>
<td>6,143</td>
</tr>
<tr>
<td>Non Matches</td>
<td>737</td>
<td>1,039</td>
<td>4,667</td>
<td>896,677</td>
<td>56,373</td>
</tr>
</tbody>
</table>

**FIGURE 40: DISTRIBUTION OF CROW-FLY DISTANCE LABELS FOR “HIGHLY LIKELY” MATCHES VERSUS NON-MATCHES**

<table>
<thead>
<tr>
<th></th>
<th>Within 2km</th>
<th>1-4km</th>
<th>4-9km</th>
<th>9-16km</th>
<th>Over 16km</th>
<th>Unknown distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Likely Matches</td>
<td>172,364</td>
<td>20,040</td>
<td>10,758</td>
<td>5,893</td>
<td>9,645</td>
<td>3,979</td>
</tr>
<tr>
<td>Non Matches</td>
<td>21,482</td>
<td>114,245</td>
<td>224,985</td>
<td>250,330</td>
<td>329,841</td>
<td>18,550</td>
</tr>
</tbody>
</table>

**FIGURE 41: DISTRIBUTION OF AMBULANCE ARRIVAL TO ED CHECK-IN TIME LABELS FOR “HIGHLY LIKELY” MATCHES VERSUS NON-MATCHES**

<table>
<thead>
<tr>
<th></th>
<th>1-4 mins before</th>
<th>Same time</th>
<th>1-4 mins after</th>
<th>4-9 mins after</th>
<th>9-16 mins after</th>
<th>16-25 mins after</th>
<th>25-36 mins after</th>
<th>Other time of arrival</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Likely Matches</td>
<td>926</td>
<td>2,461</td>
<td>45,130</td>
<td>109,094</td>
<td>55,110</td>
<td>13,701</td>
<td>2,914</td>
<td>2,456</td>
</tr>
<tr>
<td>Non Matches</td>
<td>23,362</td>
<td>7,835</td>
<td>22,194</td>
<td>37,154</td>
<td>54,045</td>
<td>70,593</td>
<td>86,240</td>
<td>6,578,110</td>
</tr>
</tbody>
</table>
FIGURE 42: DISTRIBUTION OF AMBULANCE INCIDENT NUMBER LABELS FOR “HIGHLY LIKELY” MATCHES VERSUS NON-MATCHES (BY HEALTH BOARD OF MAJOR ED)

<table>
<thead>
<tr>
<th>Board</th>
<th>Highly Likely</th>
<th>Non-matches</th>
<th>Total</th>
<th>LR</th>
<th>LLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>15,112</td>
<td>546</td>
<td>15,658</td>
<td>102</td>
<td>2.441</td>
</tr>
<tr>
<td>AMBU</td>
<td>16,124</td>
<td>704</td>
<td>16,828</td>
<td>66</td>
<td>2.224</td>
</tr>
<tr>
<td>BCU</td>
<td>34,064</td>
<td>1,155</td>
<td>35,219</td>
<td>64</td>
<td>4.024</td>
</tr>
<tr>
<td>CRY</td>
<td>27,092</td>
<td>1,046</td>
<td>28,138</td>
<td>411</td>
<td>2.253</td>
</tr>
<tr>
<td>CT</td>
<td>20,904</td>
<td>1,237</td>
<td>22,141</td>
<td>12,215</td>
<td>75,561</td>
</tr>
<tr>
<td>HD</td>
<td>2,224</td>
<td>1,104</td>
<td>3,328</td>
<td>4</td>
<td>1,496</td>
</tr>
</tbody>
</table>

FIGURE 43: LIKELIHOOD RATIOS (LR) AND LOG LIKELIHOOD RATIOS (LLR) FOR GEOGRAPHY, CROW-FLY DISTANCE, AGE, GENDER AND ARRIVAL TO CHECK-IN TIME LABELS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Label Name</th>
<th>LR</th>
<th>LLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Same age</td>
<td>55.4</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>1 year age difference</td>
<td>5.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>2 year age difference</td>
<td>0.7</td>
<td>-0.4</td>
</tr>
<tr>
<td></td>
<td>3+ years age difference</td>
<td>0.1</td>
<td>-2.8</td>
</tr>
<tr>
<td>Gender</td>
<td>Different gender</td>
<td>0.0</td>
<td>-4.7</td>
</tr>
<tr>
<td></td>
<td>Same gender</td>
<td>2.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Geography</td>
<td>Postcode match</td>
<td>701.7</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>Census output area match</td>
<td>73.6</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Lower super output area match</td>
<td>16.9</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>No match on geographic area</td>
<td>0.3</td>
<td>-1.4</td>
</tr>
<tr>
<td>Distance</td>
<td>Within 1km</td>
<td>33.8</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1-4km</td>
<td>0.7</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td>4-9km</td>
<td>0.2</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td>9-16km</td>
<td>0.1</td>
<td>-2.2</td>
</tr>
<tr>
<td></td>
<td>Over 16km</td>
<td>0.1</td>
<td>-2.1</td>
</tr>
<tr>
<td>Arrival time</td>
<td>1-4 mins before</td>
<td>0.2</td>
<td>-1.8</td>
</tr>
<tr>
<td></td>
<td>Same time</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>1-4 mins after</td>
<td>8.5</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>4-9 mins after</td>
<td>11.4</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>9-16 mins after</td>
<td>4.3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>16-25 mins after</td>
<td>0.8</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>25-36 mins after</td>
<td>0.1</td>
<td>-1.9</td>
</tr>
<tr>
<td></td>
<td>Other arrival time</td>
<td>0.0</td>
<td>-4.1</td>
</tr>
</tbody>
</table>
FIGURE 44: LIKELIHOOD RATIOS (LR) AND LOG LIKELIHOOD RATIOS (LLR) FOR AMBULANCE INCIDENT NUMBER LABELS, BY HOSPITAL

<table>
<thead>
<tr>
<th>HEALTH BOARD</th>
<th>HOSPITAL NAME</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB HB</td>
<td>Nevill Hall Hospital</td>
<td>217.7</td>
<td>5.4</td>
<td>26.6</td>
<td>3.3</td>
<td>307.4</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>Royal Gwent Hospital</td>
<td>293.2</td>
<td>5.7</td>
<td>42.4</td>
<td>3.7</td>
<td>374.8</td>
<td>5.9</td>
</tr>
<tr>
<td>ABMU HB</td>
<td>Morriston Hospital</td>
<td>351.3</td>
<td>5.9</td>
<td>541.5</td>
<td>6.6</td>
<td>329.8</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Prince of Wales Hospital</td>
<td>363.2</td>
<td>5.9</td>
<td>248.1</td>
<td>5.5</td>
<td>343.5</td>
<td>5.5</td>
</tr>
<tr>
<td>BCU HB</td>
<td>Wrexham Maelor Hospital</td>
<td>209.4</td>
<td>5.3</td>
<td>229.4</td>
<td>5.4</td>
<td>267.7</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>Ysbyty Glyn Cwylid</td>
<td>429.5</td>
<td>6.1</td>
<td>390.9</td>
<td>6.0</td>
<td>316.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Ysbyty Gwynedd</td>
<td>260.3</td>
<td>5.6</td>
<td>210.5</td>
<td>5.4</td>
<td>316.5</td>
<td>5.5</td>
</tr>
<tr>
<td>C&amp;V HB</td>
<td>University Hospital of Wales</td>
<td>593.0</td>
<td>6.4</td>
<td>529.7</td>
<td>6.5</td>
<td>340.5</td>
<td>5.5</td>
</tr>
<tr>
<td>CT HB</td>
<td>Prince Charles Hospital</td>
<td>102.3</td>
<td>5.3</td>
<td>193.1</td>
<td>5.3</td>
<td>262.3</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>The Royal Glamorgan Hospital</td>
<td>238.3</td>
<td>5.5</td>
<td>81.4</td>
<td>4.4</td>
<td>286.3</td>
<td>5.6</td>
</tr>
<tr>
<td>HD HB</td>
<td>Bronglais General Hospital</td>
<td>112.1</td>
<td>4.7</td>
<td>36.1</td>
<td>3.6</td>
<td>36.1</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Glan Clwyd General Hospital</td>
<td>122.7</td>
<td>4.8</td>
<td>123.1</td>
<td>4.8</td>
<td>282.3</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Withybush General Hospital</td>
<td>106.8</td>
<td>4.7</td>
<td>150.1</td>
<td>4.9</td>
<td>18.8</td>
<td>2.9</td>
</tr>
</tbody>
</table>

CALCULATING THE OVERALL MATCH SCORE (POSTERIOR LOG ODDS SCORE)

Shown in Figures 45 and 46 are two worked examples of how match scores (or the posterior log odds) are calculated. Note how only one out of the geographic area comparison and distance scores (the highest) contributes to the overall score, with the five independent LLRs added to the prior odds to arrive at the posterior log odds. In Figure 46, also note that where any of the information is unknown or missing (e.g. the ambulance incident number in the ED record), a LLR score of 0 is awarded.

FIGURE 45: CALCULATION OF MATCH SCORE FOR PAIR 1

<table>
<thead>
<tr>
<th>ATTRIBUTE COMPARISON</th>
<th>AMBULANCE</th>
<th>ED</th>
<th>LABEL</th>
<th>LLR</th>
<th>LLR TO USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age comparison</td>
<td>73</td>
<td>73</td>
<td>Same age</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gender comparison</td>
<td>F</td>
<td>F</td>
<td>Same gender</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Incident Location v Place of Residence</td>
<td></td>
<td></td>
<td></td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>Geographic area comparison</td>
<td></td>
<td></td>
<td></td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>Postcode</td>
<td>SA6 6NL</td>
<td>SA6 6RU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Census Output Area</td>
<td>W00010084</td>
<td>W0004356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Super Output Area</td>
<td>W0100816</td>
<td>W0100806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>1.3km</td>
<td>1-4km</td>
<td>-0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from ambulance arrival to ED check in</td>
<td>03:57</td>
<td>1-4 minutes</td>
<td>2.1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Ambulance Incident Number</td>
<td>C1979447</td>
<td>1979447</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior Odds for Arrivals at University Hospital of Wales at 02:24 on a Wednesday</td>
<td>-1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Match score (Posterior log odds)</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 46: CALCULATION OF MATCH SCORE FOR PAIR 2

<table>
<thead>
<tr>
<th>ATTRIBUTE COMPARISON</th>
<th>AMBULANCE</th>
<th>ED</th>
<th>LABEL</th>
<th>LLR</th>
<th>LLR TO USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age comparison</td>
<td>51</td>
<td>52</td>
<td>1 year age difference</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Gender comparison</td>
<td>F</td>
<td>F</td>
<td>Same gender</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Incident Location v Place of Residence</td>
<td></td>
<td></td>
<td></td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>Geographic area comparison</td>
<td></td>
<td></td>
<td></td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>Postcode</td>
<td>NP14 3QA</td>
<td>NP14 3QA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Census Output Area</td>
<td>W00010012</td>
<td>W00010012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Super Output Area</td>
<td>W0100900</td>
<td>W0100900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>0.0km</td>
<td>Within 1km</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from ambulance arrival to ED check in</td>
<td>05:12</td>
<td>4-9 minutes</td>
<td>2.1</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Ambulance Incident Number</td>
<td>C1739173</td>
<td>Unknown</td>
<td>Unknown</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Prior Odds for Arrivals at Royal Gwent Hospital at 16:30 on a Sunday</td>
<td>-2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Match score (Posterior log odds)</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXTRACTING THE “BEST” MATCHES
From the "possible matches" table, we removed those pairs of records already deemed to be an exact match, plus all associated pairs known to be non-matches, and calculated match scores for all remaining pairs of records.

In order to reduce the chance of false matches, we only considered those pairs of matches where the log odds score was the highest for that CAD record and also the highest for that ED record. We labelled these pairs of records as "best matches".

What constitutes a good posterior log odds score?

In order to quantify how good a posterior log odds score is, there is a need to need to convert these scores to match probabilities. In order to do this, we carried out an independent probabilistic matching exercise for all those CAD records which already had a known "highly likely" ED match, verified previously using the NHS number, and then independently extracted "best matches" for these. We then calculated the proportion of times that the "best match" agreed with the "highly likely" match, for different ranges of posterior log odds scores.

Figure 47 shows how the % sensitivity (or % of records accepted as a match) decrease as our posterior log odds threshold values increase. However, as the posterior log odds increases, our % confidence that those are true matches also increases. In this case, a posterior log odds of 0 equates to a match probability of around 91.4%, and using this value as the minimum threshold for the acceptance of a match, we result in a match rate (% sensitivity) of 98.8%. Indeed, for this threshold value of 0, the overall true match rate would be 98.3% (% specificity), as most of the posterior log odds are actually well in excess of 0.

It should be noted that the sample of records used for this probability modelling are, by definition, a cleaner set than we would typically expect to deal with when carrying out probabilistic matching in practice; the fact that NHS numbers were able to be derived for these records would suggest that they were above average in terms of the completeness and accuracy of the fields contained within those records. In addition, the "highly likely" cohort deliberately excluded incidents where there were multiple patients conveyed, or where there were more than one ED attendances for the same patient in quick succession (possible duplicates). Therefore, when running the probabilistic matching in practice on less sanitised data, we would have expected to see significantly lower rates of sensitivity.

Of the 4,325,589 ambulance incidents where there was at least one conveyance to a major ED, matches to associated ED records were found for 3,921,881 (a match rate of 90.7%). However, taken as a percentage of the slightly smaller number of ED records put forward for matching (4,184,220), a healthier match rate of 93.7% was achieved. In terms of levels of confidence in the matches, 58.9% of the 3,921,881 were exact matches, 28.7% were probabilistic matches with match probabilities greater than 99%, 11.8% had match probabilities between 95% and 99% and 0.6% had match probabilities between 90% and 95%.

**FIGURE 47**

<table>
<thead>
<tr>
<th>Posterior Log Odds</th>
<th>% True matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>91.4%</td>
</tr>
<tr>
<td>1.5</td>
<td>97.1%</td>
</tr>
<tr>
<td>9.5</td>
<td>98.7%</td>
</tr>
</tbody>
</table>

% Match rate (Sensitivity)
The publication of the McClelland review of the Welsh Ambulance Service in April 2013, can be considered as a seminal point in the development of emergency ambulance services commissioning in Wales. Numerous other reviews had been conducted into the performance and quality of the ambulance service in Wales, in the six years prior to the publication of the review, however despite this level of scrutiny, ambulance response time performance was consistently the poorest in the UK.

The McClelland review made a series of recommendations on the future delivery of ambulance services in Wales, this included establishing the Emergency Ambulance Services Committee (EASC) as a statutory body of health boards responsible for jointly planning and securing emergency ambulance services. Within the first year of being established EASC delivered a number of significant milestones, including the provision of additional £7.5m funding for 119 members of staff, a further recurrent £8m, and a commissioning quality and delivery framework that clearly set out the arrangements and expectations for the emergency ambulance service. This progress acted as the catalyst to enable the delivery of the McClelland recommendation around the need to review ambulance service response targets and support the ambulance service to become a clinical service fully embedded in the wider unscheduled care system.

The EASC at its inaugural meeting in April 2014 sponsored the use of CAREMORE® for the creation of a Commissioning, Quality & Delivery Framework Agreement (‘Framework Agreement’) for Emergency Ambulance Services. A Collaborative Commissioning Project Group was established to lead the production of the Framework Agreement, which consisted of representation, at executive director level, from all Health Boards and WAST, together with Welsh Government and Public Health Wales.

Collaborative Commissioning was the favoured methodology as it endorses the national ‘once for Wales’ approach to share and develop ideas in a non-competitive environment. This is the situation in which CAREMORE® has been successfully applied to develop the ‘Framework Agreement’.

The Framework Agreement covers WAST’s provision of emergency ambulance services, which includes:

- Responses to emergencies following ‘999’ telephone calls;
- Urgent hospital admission requests from General Practitioners (and other Health Care Professionals);
- High dependency and inter-hospital transfers;
- Patient triage by telephone;
- NHS Direct Wales Services; and
- Major incident responses.

Emergency Ambulance Services Commissioning

Collaborative Commissioning Quality and Delivery Framework

The Ambulance Care Pathway is designed to ensure that ambulances are dispatched to calls where there is an immediate need to save life or provide treatment which requires an ambulance. For other less serious cases, alternative treatments such as referrals to other parts of the NHS or telephone advice will be provided. The pathway is intended to ensure the ambulance service is providing the right response for a patient dependent on their clinical need.
Technical Appendix: 3

Call Categories

Call categories provide the ambulance service with a means to cohort the large number of MPDS codes into a manageable number of categories that require a similar response.

Within Wales and indeed across the UK there have been a number of iterations of call categories since the establishment of NHS ambulance services. The tables below provide an overview of the development of call categories in Wales over recent years.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>TARGET / MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A</td>
<td>Immediately life-threatening condition/injury</td>
<td>65% of all Category A incidents across Wales must be responded to by a suitable responder within eight minutes of the chief complaint being verified by the call taker and a minimum level of 60% must be achieved in every LHB area. 95% of all Category A incidents must also be attended by a fully equipped emergency ambulance within a specified time of the start of the incident which is set at 14 minutes in Cardiff, 21 minutes in Powys, Ceredigion, Gwynedd and Anglesey and 18 minutes elsewhere in Wales.</td>
</tr>
<tr>
<td>Category B</td>
<td>Serious but not life threatening condition/injury</td>
<td>95% of all Category B incidents must be attended by a fully equipped emergency ambulance within the 14/18/21 minute time period from the start of the incident.</td>
</tr>
<tr>
<td>Urgent Journey</td>
<td>Neither life threatening or serious condition/injury</td>
<td>95% of all Urgent calls must be in hospital within 15 minutes of the time when the doctor specified that the patient should arrive.</td>
</tr>
</tbody>
</table>

In December 2011, a number of changes took place to ambulance response time standards, from that point only the most serious calls, Category A (immediately life-threatening), were guaranteed an emergency blue light response. All other calls would receive an appropriate response, either face-to-face or telephone assessment, based on clinical need.

Category B was removed as a call category and the codes within there either upgraded to Category A (the codes considered most serious) or for the majority of Category B calls, included in a revised Category C. For the first time, Health Care professional Calls would be prioritised and classified as Category A or C in the same way as emergency 999 calls.

<table>
<thead>
<tr>
<th>FIGURE 49 PRE-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY</td>
</tr>
<tr>
<td>Category A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIGURE 50: 2011 – OCTOBER 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY</td>
</tr>
<tr>
<td>Category A</td>
</tr>
<tr>
<td>Category C</td>
</tr>
</tbody>
</table>
For operational purposes the ambulance service split Category A into Red 1 and Red 2. Red 1 calls are the most time critical and cover patients who have suffered a cardiac arrest or have stopped breathing; Red 2 calls are serious but less immediately time critical and cover all other potentially life-threatening conditions. A number of these Red 2 calls turn out after assessment or initial treatment to be suitable for referral to another agency such as primary care. From February 2015 information for RED 1 and RED 2 calls was published by Stats Wales.6a

Clinical Response Model
In early 2015, the increasing confidence in the commissioning arrangements for ambulance services, provided the Welsh Government with sufficient confidence to launch a clinical review of ambulance targets in Wales, led by the ambulance services medical director, Dr Brendan Lloyd. The review found that the 8-minute response time target was introduced 41 years ago and was based on evidence which suggests it only improves outcomes for people who have suffered an out-of-hospital cardiac arrest.

The clinical review demonstrated that there was little evidence that an 8-minute response will make a difference to the vast majority of people’s outcomes following treatment – about 95% of people who access the Welsh Ambulance Service.7a

As such a radical pilot for ambulance response time targets in Wales was proposed that segregated patients into 3 categories:

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>TARGET / MEASURE</th>
<th>TYPES OF CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Immediately life-threatening</td>
<td>65% of emergency responses to arrive within 8 minutes</td>
<td>Cardiac arrest/major haemorrhage</td>
</tr>
<tr>
<td>Amber</td>
<td>Serious but not immediately life threatening</td>
<td>No set targets / A range of measures contained within the Ambulance Quality Indicators</td>
<td>Stroke within 4 hours/ chest pain</td>
</tr>
<tr>
<td>Green</td>
<td>Neither serious or life threatening</td>
<td>No set targets / A range of measures contained within the Ambulance Quality Indicators</td>
<td>Expected deaths/not imminent labour</td>
</tr>
</tbody>
</table>

The responsibility for the allocation of individual MPDS codes to each category reside with the Clinical Prioritisation Assessment Software (CPAS) Group within the Welsh Ambulance Service. This group is chaired by the Assistant Medical Director and senior representatives from across the operational, medical and quality directorate of the ambulance service.

During the establishment of the pilot model, the group established that the majority of Red 1 calls, categorised as Red, are subject to a time-based target (65% of these calls to have a response time within 8 minutes).

All other calls receive a response, either face-to-face or by telephone, based on an assessment of clinical need. For operational purposes the Welsh Ambulance Service sub-divides the categories to allow control room staff to prioritise the next response.

<table>
<thead>
<tr>
<th>FIGURE 51: POST OCTOBER 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY</td>
</tr>
<tr>
<td>Red</td>
</tr>
<tr>
<td>Amber</td>
</tr>
<tr>
<td>Green</td>
</tr>
</tbody>
</table>
Independent Evaluation – Public and Corporate Economic Consultants (PACEC)

A 12 month pilot was enacted on 1st of October 2015, as part of the pilot an independent evaluation of the model was commissioned by EASC. Following a competitive tender process the Public and Corporate Economic Consultants in partnership with the Medical Care Research Unit at the University of Sheffield were appointed to undertake this evaluation.

In September 2016 the pilot was extended for a further 6 months to allow the independent evaluation to complete.

The final evaluation report was provided to EASC and published in January 2017. The evaluation found there to be a clear and universal acknowledgement, both from WAST and external stakeholders, that moving to the new clinical model was appropriate and beneficial and did not find evidence for reverting to the old model.

The report made a number of recommendations for improvement, which are outlined below:

- A need to review the call categories outside Red, in particular the Amber category. There is concern that the latter is too large and not sufficiently discriminatory in terms of prioritising patients with high acuity illness, and that for some calls this is resulting in unacceptably long waits.

- Investment in information systems which will provide opportunities to both enhance and make more seamless the call management and dispatch process and provide more robust information to support further development both internally and externally. The approved and planned replacement of the CAD system will be a key factor in supporting further development and improvement of the clinical model.

- Providing alternative response options is a multifactorial problem. Some factors lie within the emergency ambulance service, requiring identification of calls which might best be served by these options but also having the infrastructure, workforce profile and training to provide them at necessary scale. Others are outside the ambulance service and are concerned with the wider system provision of suitable alternative services, at the time they are needed and with clear agreed access and referral pathways that will allow ambulance service clinicians to safely transfer care.

- There is variation between health boards, indicating that wider system processes for managing calls that do not need transporting to an acute hospital are better in some areas than others. There is scope to increase hear and treat and see and treat if the right pathways are in place that allow and support confident and safe clinical decision making by clinicians in the clinical hub or at scene with a patient.

The committee welcomed the report and accepted all of the recommendations. In February 2017, the Cabinet Secretary announced that on the basis of the report and the plan from EASC to deliver the recommendations that the clinical model would be implemented on a permanent basis.
Technical Appendix: 5

Welsh Ambulance Service Functions

Call Cycle Process
When you call 999 a telephone operator will ask you which emergency service you need. In a medical emergency you will be connected with the Ambulance Service.

Welsh Ambulance Service operate a virtual call handling environment to ensure that all 999 calls are answered as quickly as possible. This means that whenever possible calls will be routed to the local clinical contact centre however if all call handlers are already dealing with 999 calls you will be routed to any available 999 call handler in Wales.

Once connected callers are asked about the consciousness and breathing status of the patient to ensure that immediately life-threatening emergencies are identified as soon as possible. Once this information is obtained the caller will be asked to describe what has happened.

This information is entered into our Computer Aided Dispatch System (CAD) which integrates with an electronic version of the Medical Priority Dispatch System (MPDS). The EMD will then ask some additional questions including:

- the patient’s age, sex and medical history
- whether the patient is breathing, conscious, bleeding seriously or has had persistent chest pain
- the type of injury and how it happened

Asking these questions enables the EMD to offer advice and ensure the most appropriate assistance is provided. The answers to the questions provide a prioritisation code which informs the type of assistance provided.

Computer Aided Dispatch System
The ambulance services in Wales, in common with other emergency services, uses a Computer Aided Dispatch System (CAD). These sophisticated systems are able to utilise and host a large range of systems such as mapping, telephony and radio’s and are able to track all of the incidents and resources available to the ambulance service.

In 2016 the Welsh Ambulance Services was supported with a significant financial investment to upgrade its CAD system to the latest technology. The Alert C3 system went live in Wales during November 2017 and whilst the initial project aimed to replicate the abilities of the previous CAD system, a rollout programme for additional functionality is now in place.

As part of initial implementation additional functionality was provided. Auto-Dispatch to Emergency calls prioritised as Red (Immediately Life-Threatening) allows the CAD system to allocate resources based on a set of pre-configured parameters. The system is able to allocate much quicker than manual dispatch and is quality checked by a dispatcher at the same time to ensure the decision is correct. The Clinical Support Desk function was also improved through the implementation of a single dedicated queue of patients populated based on strict criteria. Previously the clinicians would spend time reading through existing calls to find the most appropriate patients which took time. The new functionality speeds up appropriate care for more patients and improves reporting of Clinical Support Desk operations.

Types of Ambulance Service
Emergency Response
The delivery of an emergency ambulance service system is complex and is dependent on a range of staff groups and vehicle to provide effective services. The following tables aim to provides a summary of roles, responses and capabilities that are available to the Welsh Ambulance Service.

<table>
<thead>
<tr>
<th>FIGURE 53: JOB ROLES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>JOB TITLE</strong></td>
</tr>
<tr>
<td>Emergency Medical Dispatcher (Call Handler)</td>
</tr>
<tr>
<td>Allocator/Dispatcher</td>
</tr>
<tr>
<td>CCC Clinician</td>
</tr>
<tr>
<td>Paramedic</td>
</tr>
<tr>
<td>Emergency Medical Technician (EMT)</td>
</tr>
<tr>
<td>Urgent Care Services</td>
</tr>
<tr>
<td>Advanced Paramedic Practitioner</td>
</tr>
</tbody>
</table>
**Response Types**

**Emergency Ambulance**
Respond to all types of emergency calls and undertake urgent and emergency transfers for medically unwell patients. Crewed by two clinicians and capable of conveying patients to a place of definitive care.

**Rapid Response Vehicle**
Respond to all types of emergency calls. Crewed by only one clinician, and unlike the emergency ambulance, have very limited ability to convey patients.

**Urgent Care Vehicle**
UCS supports the Emergency Medical Services (EMS) to provide safe transport for stable patients requiring urgent transport or transfer. UCS crews can undertake emergency transfers where a medical or nursing escort is travelling with the patient.

**Hazardous Area Response Vehicles (HART)**
HART provide a specialist response to incidents where their advanced Hazardous Area training is required. This includes fire, RTC, chemical, building collapse, water, height, difficult patient rescue etc. They are equipped with specialist equipment.

**Emergency Medical Retrieval and Transfers Service (EMRTS)**
EMRTS are an aeromedical response using rotary wing helicopters. The response and subsequent transport are rapid but dependent on landing zones and weather. Calls are selected by an EMRTS clinician as suitable.

**Clinical Desk**
Conducts ‘Hear and Treat’ consultations with patients accessing the 999 system to provide resolution of case, self-care advice, referral to alternative points of care or admission to hospital via alternative means.

**Ideal and Suitable Responses**
In order to support dispatchers and allocators with the decision making process around which resource to send to each call based on the MPDS code, the Welsh Ambulance Service has developed a patients’ centred response matrix that aligns the most appropriate (ideal) response or next best response (suitable) to each individual MPDS code.

By using the matrix, dispatchers are able to make clinically appropriate decisions for the allocation of the next resource. As an example most MPDS codes related to stroke, have an Emergency Ambulance as the ideal resource, with the logic being that in order for these patients to receive the best level of care in the timeliest manner, they need a resource to attend with the capability of transporting them to hospital.

Rapid Response Vehicles are considered a suitable response to these calls, they are able to provide a level of clinical assessment and re-assurance, they have very limited patient transportation capabilities, as such their contribution to the patients care and clinical outcome is severely limited for patients with a stroke.

**Clinical Desk**
Over a number of years, Welsh Ambulance Service’s research and development resulted in the Clinical Support Desk being identified as a key element of the Clinical Response Model implemented in October 2015.

The Clinical Support Desk (CSD) staffed by clinicians, both nurses and paramedics who undertake a key role in providing quality care to service users by providing secondary triage to suitable callers within the 999 stream identifying alternative care pathways which may be more suitable than a trip by ambulance to the Emergency Department.

They clinicians can also assist Health Care Professional in managing appropriate transport for patient admissions and provide information from the local directory of services for operational staff and non-clinical CCC colleagues. Secondary triage is undertaken utilising the Manchester Triage System Telephone Triage and Advice (MTS TTA) model. This tool provides consistency in clinical decision making by guiding registered clinicians through a set of algorithms.
Medical Prioritisation Dispatch System

To ensure that ambulance services appropriately respond to demand, they must use prioritisation systems that allow them to differentiate between patients’ conditions and decide which patient receives the next response.

The Welsh Ambulance Service uses the Medical Priority Dispatch System (MPDS) for this purpose. MPDS is used by approximately 3,000 services across the globe. It is a system that allows ambulance control room staff to obtain vital information about the patient and the scene. This information can then be used to select the appropriate response and to provide immediate lifesaving advice over the phone.

In May 2018, the three clinical contact centres in Wales were awarded the International Academies of Emergency Dispatch Centre of Excellence status. Only 250 services worldwide have achieved this status that recognises the delivery of the highest standards of compliance when using MPDS.

The MPDS system generates a specific dispatch code that is composed of three main pieces of information. A number of codes also have suffix letter as a 4th component, this suffix provides further detail about the incident such as environmental factors. The first component consists of a number from 1 to 37 that indicates the specific protocol card that has been selected following initial questions to the caller. Each protocol card contains a range of questions related to a patient’s condition.

The second component is a letter from A to E and including the Greek letter Ω, this letter denotes the type of response that a patient may need for their condition based on the answers given by the caller.

The final component is a number. This number relates to further specific information about an individual patient’s condition.

N.B. Cards 33, 34, 36 and 37 are not currently in use by the Welsh Ambulance Service.

The protocol cards are listed below:

1. Abdominal Pain/Problems
2. Allergies (Reactions)/Envenomation (Stings, Bites)
3. Animal Bites/Attacks
4. Assault/Sexual
5. Back Pain (Non-Traumatic/Non-Recent)
6. Breathing Problems
7. Burns (Scalds)/Explosions
8. Carbon Monoxide/Inhalation/HAZMAT/CBRN
9. Cardiac or Respiratory Arrest/Death
10. Chest Pain
11. Choking
12. Convulsions/Seizures
13. Diabetic Problems
14. Drowning/Diving/SCUBA Accident
15. Electrocution/Lightning
16. Eye Problems/Injuries
17. Falls
18. Headache
19. Heart Problems/A.I.C.D.
20. Heat/Cold Exposure
21. Haemorrhage/Lacerations
22. Inaccessible Incident/Entrapments
23. Overdose/Poisoning (Ingestion)
24. Pregnancy/Childbirth/Miscarriage
25. Psychiatric/Suicide Attempt
26. Sick Person
27. Stab/Gunshot/Penetrating Trauma
28. Stroke (CVA)/Transient Ischemic Attack (TIA)
29. Traffic/Transportation Incidents
30. Traumatic Injuries
31. Unconscious/Painting (Near)
32. Unknown Problem (Man Down)
33. Inter-Facility Transfer/Palliative Care
34. Automatic Crash Notification (A.C.N.)
35. HCP (Health-Care Practitioner) Referral (United Kingdom only)
36. Flu-Like Symptoms (Possible H1N1)
37. Inter-Facility Transfer specific to medically trained callers
Additional Activity Information and Analysis*

Step 2: Activity - Calls

Figure 56 shows total number of 999 calls answered by the Welsh Ambulance Service Clinical Contact Centres against the total number of 999 calls prioritised through the Medical Priority Dispatch System for the period 1st April 2016 – 31st March 2018. This information excludes duplicate calls and calls that are passed to another ambulance service.

The lowest number of 999 calls answered was 36,216 in April 2016. The highest number of calls answered was 54,879 in December 17. The month by month variation in calls ranges from -13.6% to 30.6%. The largest month by month variation can be seen in November 2017 - December 2017. Calls increased by 12849 (30.6%).

Step 3: Activity – Incidents

Figure 57 shows total number of incidents generated in each of the ambulance service response categories following calls being prioritised through the Medical Priority Dispatch System for the period 1st April 2016 – 31st March 2018. It includes all incidents recorded in the ambulance service computer aided dispatch system with a medical priority dispatch code.

---

*The impact of the implementation of a new Computer Aided Dispatch system and the resultant changes in operational practices in November 2017 cannot be fully quantified, but is a likely confounding factor in the apparent step-change in activity for the November 2017 - December 2017 period.
For the total incident volume there is a 2.2% increase in incident demand, equivalent to an additional 9456 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -11% to 12%.

For Red there is a 14.6% increase in incident demand, equivalent to an additional 2567 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -16.8% to 27.5%.

For Amber (Amber 1 and 2 combined) there is a 7.6% increase in incident demand, equivalent to an additional 25,037 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -12.5% to 16.1%.

For Amber 1 there is a 15.3% increase in incident demand, equivalent to an additional 25,037 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -13.8% to 19.7%.

For Amber 2 there is a 4.4% decrease in incident demand, equivalent to 4,648 decrease in incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -10.3% to 11%.

For Green 2 there is a 4.4% decrease in incident demand, equivalent to 4,648 decrease in incidents when comparing 2016/17 with 2017/18. The month by month variation ranges from -10.3% to 11%.

For Green 3 there is an 8.2% decrease in incident demand equivalent to an 8,660 decrease in incidents when comparing 2016/17 with 2017/18. The month by month variation ranges from -11% to 10.4%.

Step 3: Activity – Incident by Condition 1

Figure 58 demonstrates each condition in the Amber category and the relative volume generated by each. Amber 1 is a significantly larger category than Amber 2.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Amber 1</th>
<th>Amber 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal Pain/Problems</td>
<td>5,230</td>
<td>1,022</td>
</tr>
<tr>
<td>Allergies/Reactions/Envenomations</td>
<td>2,053</td>
<td>306</td>
</tr>
<tr>
<td>Animal Bites/Attacks</td>
<td>71</td>
<td>9</td>
</tr>
<tr>
<td>Assault/Sexual Assault</td>
<td>10</td>
<td>1,983</td>
</tr>
<tr>
<td>Back Pain (Non-Trauma/Non-Recent)</td>
<td>2,169</td>
<td>1,209</td>
</tr>
<tr>
<td>Breathing Problems</td>
<td>71,117</td>
<td>10,260</td>
</tr>
<tr>
<td>Burns/Scalds/Explosion</td>
<td>10</td>
<td>1,530</td>
</tr>
<tr>
<td>Carbon Monoxide/Inhalation/Hazchem</td>
<td>534</td>
<td>482</td>
</tr>
<tr>
<td>Cardiac/Respiratory Arrest/Death</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Chest Pain</td>
<td>96,504</td>
<td>1</td>
</tr>
<tr>
<td>Choking</td>
<td>1,500</td>
<td>2</td>
</tr>
<tr>
<td>Convulsions/Fitting</td>
<td>17,097</td>
<td>8,509</td>
</tr>
<tr>
<td>Diabetic Problems</td>
<td>727</td>
<td>3,920</td>
</tr>
<tr>
<td>Drowning/Neck/Diving/Scuba</td>
<td>259</td>
<td>114</td>
</tr>
<tr>
<td>Electrocut/ Lightning</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Eye Problems/Injuries</td>
<td>54</td>
<td>2</td>
</tr>
<tr>
<td>Falls</td>
<td>28,509</td>
<td>50,423</td>
</tr>
<tr>
<td>Haemorrhage/Lacerations</td>
<td>19,162</td>
<td>9,617</td>
</tr>
<tr>
<td>Headache</td>
<td>914</td>
<td>1,380</td>
</tr>
<tr>
<td>Health Care Professional</td>
<td>4,679</td>
<td>3</td>
</tr>
<tr>
<td>Heart Problems/A.I.C.D</td>
<td>6,770</td>
<td>1,212</td>
</tr>
<tr>
<td>Heat/Cold Exposure</td>
<td>180</td>
<td>250</td>
</tr>
<tr>
<td>Inaccessible Incident/Other Entrap</td>
<td>136</td>
<td>38</td>
</tr>
<tr>
<td>Interfacility Evaluation/Transfer</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>Overdose/Poisoning (Ingestion)</td>
<td>679</td>
<td>14,718</td>
</tr>
<tr>
<td>Pregnancy/Childbirth/Miscarriage</td>
<td>2,111</td>
<td>1,954</td>
</tr>
<tr>
<td>Proqa Completed on Cardset</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Psych/Abnormal Behaviour/Suicide</td>
<td>451</td>
<td>24,130</td>
</tr>
<tr>
<td>Sick Person – Specific Diagnosis</td>
<td>29,626</td>
<td>13,447</td>
</tr>
<tr>
<td>Stab/Gunshot/Penetrating Trauma</td>
<td>6</td>
<td>208</td>
</tr>
<tr>
<td>Stroke – CVA</td>
<td>19,754</td>
<td>13,130</td>
</tr>
<tr>
<td>Traffic/Transportation Accidents</td>
<td>2,843</td>
<td>13,308</td>
</tr>
<tr>
<td>Transfer/Interfacility/Palliative</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>Traumatic Injuries, Specific</td>
<td>5,631</td>
<td>11,369</td>
</tr>
<tr>
<td>Unconscious/Fainting/Neck</td>
<td>32,881</td>
<td>9,348</td>
</tr>
<tr>
<td>Unknown Problem – Collapse-3rd Pty</td>
<td>5</td>
<td>4,671</td>
</tr>
<tr>
<td>Total</td>
<td>351,863</td>
<td>207,956</td>
</tr>
</tbody>
</table>
**Step 3:**
Activity – Incidents (Clinical Support Desk)

Figure 59 shows the volume of incidents dealt with Clinical Support Desk (CSD) for the period 1st April 2016 – 31st March 2018. A proportion of these incidents will still require transport to hospital, which may be by ambulance, taxi or their own transport.

For Amber (Amber 1 and 2 combined) there is an 84.9% increase in incidents stopped by the CSD, equivalent to an additional 2,880 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -25.7% to 57%.

For Amber 1 there is a 187.7% increase in incidents stopped by the CSD, equivalent to an additional 1,162 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -40% to 161%.

For Amber 2 there is a 61.9% increase in incidents stopped by the CSD, equivalent to an additional 1,718 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -24.6% to 54.7%.

**Step 3:**
Activity – Incidents (Cancelled)

Figure 60 demonstrates the number of incidents being cancelled by the caller prior to the ambulance arriving at the scene for the period 1st April 2016 – 31st March 2018.

For Amber (Amber 1 and 2 combined) there is a 129.5% increase in incidents cancelled pre-arrival, equivalent to an additional 10,771 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -20% to 74.7%.

For Amber 1 there is a 217.4% increase in incidents cancelled pre-arrival, equivalent to an additional 5,195 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -25% to 82.6%.

For Amber 2 there is a 94% increase in incidents cancelled pre-arrival, equivalent to an additional 5,576 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -23.7% to 69.8%.
Step 3:
Activity – Changes in prioritisation

Figure 61 show the numbers of incidents stopped in Amber 1 and Amber 2 due to the patient’s condition being re-prioritised for the period 1st April 2016 – 31st March 2018.

These instances occur when subsequent 999 calls are received for the same incident, but following re-prioritisation, a different category of response is required. In these instances the original incident will be closed and a new incident generated under the new priority.

Step 4:
Activity – Attendance at Scene

Figure 62 and Figure 63 demonstrates the relationship between the numbers of incidents requiring an attendance at scene, against the number of vehicles that attended the scene for the period 1st April 2016 – 31st March 2018.

The clinical model is designed to minimise the number of multiple vehicle arrivals at scene for Amber incidents by sending the right resource the first time that is able to manage a patient’s condition. There are a number of Amber incidents where it is accepted that multiple resource may be appropriate (such as chest pain).
For Amber 1 there is a 11.4% increase in incidents requiring attendance at scene, equivalent to an additional 18,132 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -13.7% to 16.8%.

For Amber 1 there is a 7.4% increase in the number of vehicles attending scene, equivalent to an additional 15,720 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -14.7% to 18.5%.

For Amber 2 there is a 16.5% decrease in incidents requiring attendance at scene, equivalent to a 15,046 decrease in incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -14.9% to 12.4%.

For Amber 2 there is an 18.4% decrease in incidents requiring attendance at scene, equivalent to a 20,321 decrease in incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -16.8% to 11.6%.

For Amber (Amber 1 and 2 combined) there is a 1.2% increase in incidents requiring attendance at scene equivalent to an additional 3,086 incidents when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -11.7% to 10.3%.

For Amber (Amber 1 and 2 combined) there is a 1.4% increase in the number of vehicles attending scene, equivalent to a decrease of 4,601 attendances when comparing 2016/17 with 2017/18. The month by month variation in demand ranges from -12.9 to 10.9%.
Step 4:
Activity – First Vehicle to Scene

Figure 64 and Figure 65 demonstrate the type of vehicle arriving first at the scene of Amber 1 and 2 incidents over period 1st April 2016 – 31st March 2018.

![FIGURE 64: AMBER 1 FIRST VEHICLE TO SCENE](image1)

![FIGURE 65: AMBER 2 FIRST VEHICLE TO SCENE](image2)
Step 4:
Activity – Back Up Request

Figure 66 and Figure 67 demonstrate the volume and types of back up being requested by resources on scene for the period 1st April 2016 – 31st March 2018.
Step 4: Activity – Non-Conveyance

Figures 68 and Figure 69 demonstrate the numbers of incident resulting in a non-conveyance to hospital during the period 1st April 2016 – 31st March 2018.

**FIGURE 68: AMBER 1 NON-CONVEYANCE**

**FIGURE 69: AMBER 2 NON-CONVEYANCE**
Step 5: Activity – Conveyance

Figure 70 and Figure 71 demonstrate the relationship between the numbers of incidents requiring transport to hospital from scene, against the number of vehicles that attended the hospital for the period 1st April 2016 – 31st March 2018. More than one vehicle may attend the hospital per incident if there are more than one patient, or if the patients being transported require a certain level of intervention or clinical skill set.

It should be noted that this metric relates to incidents only, the vehicle may be carrying one or more patients.
Additional Performance Information and Analysis

Step 2: Calls
Figure 72 shows quarterly comparisons of the average percentage of 999 calls answered within 6 seconds over each quarter during the period. There is a decrease in the average percentage of 999 calls answered within 6 seconds when comparing each quarter from 2016/17 with 2017/18. There was a 6% decrease when comparing quarter 1 2016/17 with quarter 1 2017/18, a 5% decrease when comparing quarter 2 2016/17 with quarter 2 2017/18, a 5.9% decrease when comparing quarter 3 2016/17 with quarter 3 2017/18 and a 3.7% decrease when comparing quarter 4 2016/17 with quarter 4 2017/18.

![Figure 72: % Calls Answered in 6 Seconds Average Quarterly Comparisons](image)

Step 3: Response Time
Figure 73 shows the relationship between Amber incident volume (where an incident requires attendance at scene) and the response time performance against median, 65th and 95th percentiles for the period 1st April 2016 – 31st March 2018.

- **Median Response:** 53.1% increase (an average additional 7.32 minutes) when comparing 2016/17 with 2017/18. The month by month variation ranges from -6.9% to 36.7%.
- **65th Percentile Response:** 65.17% increase (an average additional 12.94 minutes) when comparing 2016/17 with 2017/18. The month by month variation ranges from -9.6% to 45.7%.
- **95th Percentile Response:** 76.63% increase (an average additional 66.97 minutes) when comparing 2016/17 with 2017/18. The month by month variation ranges from -21% to 67.68%.

![Figure 73: Amber Incident Volume Versus Response Time Percentile](image)
Step 4: Clinical Indicators

Figure 74 shows performance against the clinical indicators (excluding ROSC) the period 1st April 2016 – 31st March 2018.

**Stroke patients**
An average of 95.8% of patients during 2016/17 and 96.5% of patients during 2017/18 were documented as receiving the appropriate care bundle. The month by month variation ranges from 93.4% to 98.1%.

**Older patients with suspected hip fracture**
An average of 68% of patients during 2016/17 and 75.7% of patients during 2017/18 were documented as receiving the appropriate care bundle. The month by month variation ranges from 61.7% to 79.2%.

**ST segment elevation myocardial infarction (STEMI) patients**
An average of 65.8% of patients during 2016/17 and 68.8% of patients during 2017/18 were documented as receiving the appropriate care bundle. The month by month variation ranges from 52.4% to 77.5%.

**Suspected sepsis patients**
An average of 98.8% of patients during 2016/17 and 96.7% of patients during 2017/18 were documented as receiving the appropriate care bundle. The month by month variation ranges from 92.7% to 100%.

**Patients with a suspected febrile convulsion aged 6 years and under**
An average of 82.7% of patients during 2016/17 and 100% of patients during 2017/18 were documented as receiving the appropriate care bundle. The month by month variation ranges from 66.7% to 100%.

**Hypoglycaemic patients**
An average of 85% of patients during 2016/17 and 86.3% of patients during 2017/18 were documented as receiving the appropriate care bundle. The month by month variation ranges from 77% to 90.1%.
Technical Appendix Reference

2a A Strategic Review of Welsh Ambulance Services - Professor Siobhan McClelland – 2013
3a Welsh Ambulance Service NHS Trust – OBH Capacity Review – 2012
   - Wales Audit Office (WAO) follow up review of the Welsh Ambulance Service NHS Trust – 2008
4a http://www.southwalesargus.co.uk/news/11749793.Ambulance_service_to_get___11m_boost/
11a http://www.emergencydispatch.org/AboutTheAcademy
12a http://www.emergencydispatch.org/articles/whatis.html
14a http://www.emergencydispatch.org/articles/princtocipollo3.pdf