Hospitals, Water Systems and Microbiological Contamination Risks

Tim Sandle
Pharmig
Introduction

- Risks of contaminated water systems
- Types of water and water uses
- Microbiological concerns
 - Biofilms
- Design of water systems
- Treatment of water systems
- Microbiological monitoring:
 - Bioburden
 - Pathogens
 - Endotoxin
- Discussion points
Risks of contaminated water systems

- Water with a high bioburden or specific pathogens:
 - Patient risk,
 - Healthcare worker risk,
 - Water system damage (biocorrosion),
 - Bad publicity,
 - Economic burden (downtime and prolonged treatment time).
Hospital water systems

- Types of water:
 - Mains water
 - Filtered water
 - Purified water (reverse osmosis)
- Water in hospitals is used for a variety of uses:
 - Haemodialysis,
 - Decontamination washers,
 - Clean sterilizer reuse,
 - Cleaning surgical instruments,
 - Floor cleaning,
 - Analyser equipment,
 - Boiler room to provide steam services.
Microbiological concerns

- Three types of microbial concern:
 - Excessively high levels of bacteria.
 - Presence of specific pathogens (‘objectionable’ microorganisms such as *Pseudomonas aeruginosa*).
 - Bacterial endotoxin.
Microorganisms in water

- Dual problem:
 - Microorganisms grow in water;
 - Water spreads microorganisms easily.
- Most microorganisms have two ‘lifestyles’:
 - Planktonic: freely floating in water
 - Sessile: attached to a surface
 - Main type: Gram-negative bacteria
- Microorganisms attach to surfaces by secreting a sticky polymer.
 - This can lead to biofilms forming.
Biofilms #1

- Microorganisms adhere to a surface by secreting DNA, protein and carbohydrates (extrapolymeric substances called a glycocalyx).
- Eventually leads to a biofilm
Biofilms #2
Biofilms #3

- A biofilm is a complex community which contains a great variety of microorganisms.
- Once formed biofilms are very hard to remove: slimy outer layers become resistant to disinfection and heat.
 - Lead to a ‘sludging’ effect, the mass continuously ‘secretes’ matter and microorganisms into the passing water: a steady level of contamination.
 - Far more bacteria in a biofilm than there are free floating.
Designing good water systems
Supplied water

- Supplied water (mains or potable water) will contain a mix of different types of microorganisms.
- The initial stages of water treatment e.g. chlorination help to control the numbers of microorganisms.
- Water is distributed through a network of pipes.
 - Temperature of the water in pipes is important.
 - Main risks are below 55°C in hot water pipes and above 20°C in cold water pipes = Pseudomonads.
Water system design #1

- A good water system design keep microorganisms in the planktonic state; a poor water system leads to biofilms, because of:
 - Downtime.
 - Poor design e.g. water flow too slow or in the wrong direction.
 - Poor finish to pipes (e.g. interiors not polished and smooth)
 - Presence of ‘deadlegs’ (lead to stagnant water).
Water system design #2

- Other design factors:
 - Water pressure: low pressure can lead to microorganisms adhering to a surface.
 - Pipe material: composition of pipe controls the types of chemicals released into the system and affects the types of bacteria that can colonise the surface.
 - Smooth internal surfaces
 - Continuous movement
 - Avoidance of areas where water can remain stagnant.
 - Pipe age: older pipes can be prone to wear and tear.
 - Physical integrity of pipes: breaks or leaks in pipes can lead to low water pressure.
 - Unclean storage tanks.
Point-of-use

- Certain types of materials used for flexible hoses pose greater opportunities for microbial colonisation than others.
 - Synthetic rubber based components (EPDM rubber) = less good.
 - Polyethylene = good
- Point-of-use filtration (using 0.2 μm pore filters)
 - Expensive
 - Masks problems?
Some best practices
Best practice examples

- Segregation of clean and dirty equipment.
- Avoiding sink ‘splashback’.
- Regular flushing of taps.
- Using handrubs as well as hand washing.

Also consider:

- Regular removal or cleaning or descaling or replacement of the water outlets, hoses and thermal mixing valves.
Treating contaminated water systems
Treatment

- Treatments include:
 - Filtration at point-of-use
 - Useful, but does not address the cause
 - Heating the system
 - Ideally requires steaming
 - Chemical treatment
 - Such as chlorine or ozone.
 - Removal and replacement of pipework
 - Last resort.
Treatment

- The most common and effective treatment is chlorine.
 - Chlorine inhibits the growth of most bacteria.
 - But, can cause corrosion and toxic by-products.
 - Alternative is chloramine (NH₂Cl).
Treatment

- Caution:
 - The method undertaken to remove one pathogen can lead to conditions which lead to the proliferation of another.
 - For example, chlorine can eliminate *Ps. aeruginosa* BUT *Mycobacterium avium* is relatively resistant to chlorine.
Microbiological monitoring

Purpose and objectives
Objectives

- Microbiological concerns:
 - What is the composition and activity of the microbial communities living within a water system?
 - What influences these communities?
 - What levels of control need to be achieved?
 - If something goes wrong, such as an increase in counts, what measures need to be taken to return a system back into control?
Microbiological monitoring

- What do you want to test for?
 - Pathogens
 - Presence or absence of any specific pathogens
 - Numbers of microorganisms against set-limits
 - Total numbers of microorganisms present per millilitre or per 100mL;
 - Endotoxin (e.g. haemodialysis units)
 - Levels of bacterial endotoxin (grades of ‘highly’ purified water).
Pathogens

- **Water system risks:**
 - *Pseudomonas aeruginosa.*
 - Likes low nutrient environments, such as water systems.
 - Other opportunistic pathogens, such as *Burkholderia cepacia,* *Ralstonia picketii,* *Stenotrophomonas maltophilia,* *Sphingomonas* sp., *Acinetobacter* sp., *Enterobacter* sp., *Serratia* sp.
Pathogens #2

- **Specific risks:**
 - *Legionella pneumophila.*
 - The causative agent for legionnaires’ disease and Pontiac fever.
 - *Mycobacteria,* such as *Mycobacterium avium.*
 - Involved with several clinical cases, and can cause pulmonary and lymphatic disease.

- **Rare but possible:**
 - Coliforms, especially *Escherichia coli.*
 - Indicator of faecal contamination. Relatively unlikely.
Defining an 'objectionable microorganism' is undertaken by way of risk assessment.

- Risk of causing patient harm:
 - Age and health of the patient,
 - Whether the patient is immunocompromised,
 - More susceptible to infection: elderly people, young children, cancer patients, pregnant women, and people with chronic illness.
- Whether the microorganism is antibiotic resistant.
Pseudomonas aeruginosa #1

- To detect *Pseudomonas aeruginosa*, selective media containing cetrimide (cetyl trimethylammonium bromide) is required.
Pseudomonas aeruginosa #2

- *Pseudomonas aeruginosa* it is expected that no isolates will be detected.
 - Low level be detected (<10 colony forming units per millilitre of water examined), the risk is normally regarded as medium and a review should be undertaken.
 - If 10 or more colonies are isolated, the use of the water system should be discontinued and action taken.
Total numbers

- **General consensus:**
 - R2A agar at low temperature for a long period of time
- **Importance of trending**
 - Examinations for:
 - Low and high use
 - Seasonality (e.g. low use at public holidays)
 - Changes following maintenance

Total numbers

- Mains water should not exceed 30,000 CFU/100mL.
 - As per WHO.
- Purified water should not exceed 10,000 CFU/100mL.
 - As per European Pharmacopeia.
- In reality, alert and action levels are set much lower.
Trend chart

Causes of contamination

- Special causes are local, sporadic problems such as the poor management of a particular water outlet in a process area.
- Specific to a:
 - A certain process
 - A certain outlet
 - A certain method of sanitisation, etc.
- Common causes are problems inherent in the system because of:
 - The nature of the system
 - The way the system is managed
 - The way the process is organised and operated
 - E.g. biofilm
- They can only be removed by:
 - Making modifications to the process
 - Changing the process
Rapid methods

- Flow cytometry
 - More accurate count
 - Detection of VBNC
- Process
 - Cells stained with fluorescent dyes
 - Cells passed through glass capillary
 - Laser shone
 - Analyser differentiates stained microbial cells from other (non-stained) particles
Endotoxin

- Endotoxins
 - Produced from Gram-negative bacteria when they undergo lysis.
 - LAL (Limulus amoebocyte lysate) test.
 - The principle of the LAL test is a reaction between lipopolysaccharide and a substance (“clottable protein”) contained within amoebocyte cells derived from the blood of the Horseshoe Crab.
 - ‘Safe level’ = <0.25 EU/mL
Sampling

- Importance of aseptic technique.
- Sterile containers
 - Mains water: containing sodium thiosulphate.
- When to sample?
 - In order to maximise the recovery of free floating planktonic bacteria it is important that water samples are taken:
 - During a time of no use (at least two hours since the point was last used); or
 - During a period of low use.
Discussion points (1 of 2)

- Is water system contamination a concern?
- Is the monitoring of water systems for endotoxin important?
- What makes for an objectionable microorganism? What types of organisms are looked for?
- What types of agars and incubation conditions are used for pathogens and for general bioburden testing?
Discussion points (2 of 2)

- How are alert and action levels set?
- What types of water treatments work best?
- What are the main water system design concerns?
Thank you

Tim Sandle
E-mail: timsandle@btinternet.com
Website: http://www.pharmamicroresources.com/