Decontamination of medical devices within acute services

Part D: Washer-disinfectors
Disclaimer

The contents of this document are provided by way of general guidance only at the time of its publication. Any party making any use thereof or placing any reliance thereon shall do so only upon exercise of that party’s own judgement as to the adequacy of the contents in the particular circumstances of its use and application. No warranty is given as to the accuracy, relevance or completeness of the contents of this document and NHS Wales Shared Services Partnership – Facilities Services shall have no responsibility for any errors in or omissions there from, or any use made of, or reliance placed upon, any of the contents of this document.

Note: Heath Building Notes (HBNs) and Health Technical Memoranda (HTMs) issued by the Department of Health in England are being superseded by specific Welsh editions which will be titled Welsh Heath Building Notes (WHBNs) and Welsh Health Technical Memoranda (WHTMs). Until this process is complete, where a WHBN or WHTM is referred to in the text but has not yet been published, refer to the relevant publications page on the NHS Wales Shared Services Partnership – Facilities Services website for the latest approved document.

Intranet: howis.wales.nhs.uk/whe

Internet: www.wales.nhs.uk/whe
Overview

Scope of Welsh Health Technical Memorandum 01-01 parts A to E

Welsh Health Technical Memorandum (WHTM) 01-01 gives guidance on the whole decontamination cycle in the management and decontamination of surgical instruments used in acute care.

Part A covers the policy, management approach and choices available in the formulation of a locally developed, risk-controlled operational environment. The technical concepts are based on British (BS), European (EN) and International (ISO) Standards used alongside policy and broad guidance. In addition to the prevention of transmission of conventional pathogens, precautionary policies in respect of human prion diseases including variant Creutzfeldt-Jakob disease (vCJD) are clearly stated. Advice is also given on surgical instrument management related to surgical care efficiencies and contingency against perioperative non-availability of instruments.

The management of decontamination equipment is a critical engineering service.

WHTM 01-01 Part A provides a description of the overall structure of the guidance and the rationale behind the following:

- the regulatory framework;
- roles of key personnel;
- procedures for the reporting of adverse incidents and defective equipment;
- local reprocessing (decontamination in primary care, and local decontamination);
- the management of instruments potentially contaminated with transmissible spongiform encephalopathy (TSE) infectivity.

Part B covers common elements that apply to all methods of surgical instrument reprocessing such as:

- test equipment and materials;
- design and pre-purchase considerations;
- validation and verification.

Part C covers standards, technical guidance, operational requirements, and testing and validation protocols when using steam for sterilization within the acute care setting.

Part D covers standards, technical guidance, operational requirements, and testing and validation protocols when using washer-disinfectors as part of the decontamination cycle within the acute care setting.

Part E covers non-steam sterilization processes (such as the use of vapourised hydrogen peroxide gas plasmas and ethylene oxide exposure) for sterilization for decontamination providers for the acute care setting.

WHTM 01-01 Parts B to E supersede Health Technical Memoranda 2010, 2030 and 2031.

Who should use WHTM 01-01 Part D

Part D is intended as a technical guide for management, for technical personnel with appropriate training and experience, and for users responsible for the procurement, maintenance, validation and operational management of washer/disinfectors used as part of the decontamination cycle of re-usable medical devices within the healthcare environment. It will also be of interest to microbiologists, infection control officers, architects, planners, estates managers, supplies officers, and others in both the public and private sectors.
Acknowledgements

Listed below are the contributors to the CFPP guidance published by the Department of Health (England) Publication which provided the basis for this WHTM.

Andrew Thomas Royal College of Surgeons
Bill Keevil Southampton University
Brian Kirk IHEEM Decontamination Technology Platform
David Perrett Barts & the London School of Medicine & Dentistry, Queen Mary University of London
Gavin Maxwell Royal Society of Medicine Patients Support Group
Geoff Sjogren Institute of Decontamination Sciences
Geoffrey L. Ridgway, OBE, MD Clinical Microbiologist
Graham Stanton NHS Wales Shared Services Partnership – Facilities Services
Helen Baxter University of Edinburgh
Jackie Duggan Health Protection Agency
James Ironside University of Edinburgh
Jim Gray Birmingham Children's Hospital NHS Foundation Trust
Jimmy Walker Health Protection Agency
Ken Toal Health Estates, Northern Ireland
Margaret Hollis Great Ormond Street Hospital
Mike Painter Public Health Physician
Mike Simmons Public Health Wales
Peter Brigham Newcastle upon Tyne Hospitals NHS Foundation Trust
Peter Hoffman Health Protection Agency
Robert Baxter University of Edinburgh
Robert Kingston IHEEM Decontamination Technology Platform
Sylvia Martin University College Hospital London
Terry Durack Great Ormond Street Hospital
Tracy Coates Association for Perioperative Practice

Listed below are the contributors to this WHTM who sit on the WHTM Guidance Peer Group as directed by the Welsh Government’s All Wales Decontamination Group.

Jenny Thorne Welsh Government
Tracey Gauci Welsh Government
Mike Simmons Public Health Wales
Eric Thomas NHS Wales Shared Services Partnership – Facilities Services
Graham Stanton NHS Wales Shared Services Partnership - Facilities Services
John Prendergast NHS Wales Shared Services Partnership - Facilities Services
Peter Wiles NHS Wales Shared Services Partnership - Facilities Services
Abbreviations

AE(D): Authorising Engineer (Decontamination)
AP(D): Authorised Person (Decontamination)
BS: British Standard
CP(D): Competent Person (Decontamination)
CP(PS): Competent Person (Pressure Systems)
DE(W): Decontamination Engineer (Wales)
DI: deionised water supply
EN: European norm
IQ: Installation Qualification
ISO: International Standards Organisation
MAT: minimal access therapy
MHRA: Medicines and Healthcare products Regulatory Agency
NWSSP-FS NHS Wales Shared Services Partnership – Facilities Services
OQ: Operational Qualification
PM: planned maintenance
PQ: Performance Qualification
SOP: Standard Operating Procedures
SSD: sterile services department
TST: Technical Specification Template
vCJD: variant Creutzfeldt-Jakob disease
WHTM: Welsh Health Technical Memorandum
Contents

Overview
Scope of Welsh Health Technical Memorandum 01-01 Parts A to E
Who should use WHTM 01-01 Part D

Acknowledgements

Abbreviations

Chapter 1 Design and pre-purchase considerations
Purpose of washer-disinfectors
Choice of washer-disinfectors
Categorisation of washer-disinfectors by nature of load to be processed
Categorisation of washer-disinfectors by configuration/load handling type
When is a washer-disinfectors required?
Choice of washer-disinfectors
Assessment of workload and throughput
Rigid endoscopes
Powered devices
Specification and contract
Introduction
CE marking
Preparing a specification
Construction materials
Integral air compressors
Integral calorifiers and tanks
Dosing systems
Door controls
Loading systems
Cleaning the washer-disinfectors
Steam
Integral steam generators
Condensate recovery
Compressed air
Drainage
Hazardous effluents
Machine ventilation
Chemical additives: storage
Chemical additives
Introduction
Compatibility with the materials of construction of the washer-disinfectors
Compatibility with the process
Compatibility with the items to be processed
Compatibility with the quality of water
Compatibility with other chemical additives
Compatibility with subsequent decontamination processes
Disinfectants
Washer-disinfectors for surgical instruments and associated equipment
Single-chamber machines
Multi-chamber machines
Standard specifications
Load-handling equipment
Test connections
Ultrasonic cleaners
Applications
Standard specifications
Additional specifications
Wash cycle
Type 1 and Type 2 ultrasonicators

Chapter 2 Validation and verification

Testing of washer-disinfectors
Interrelation of test programmes
Schedule of type tests and works tests
Schedule of installation tests
Checks on ancillary equipment
Checks on washer-disinfectors
Schedule of operational tests
Performance Qualification tests
Surrogate devices
Cleaning efficacy tests
Typical test soil
Process residues
Disinfection
Load dryness tests
Schedule of periodic tests
Introduction
Weekly safety checks
Yearly safety checks
Test methods
Drainage
Venting system
Doors and door interlocks
Chemical dosing
Water vapour emissions
Instrumentation fitted to a washer-disinfector
Load carriers
Thermometric tests
Load dryness
Residual chemical additives
Air quality
Sound pressure test
Electromagnetic compatibility
Cleaning efficacy tests
Periodic tests
Disinfection efficacy tests
Automatic control test
Validation and periodic tests for ultrasonic cleaners
Introduction
Test for ultrasonic activity
Reference test loads
PQ tests

Chapter 3 Water supply

Introduction
Water hardness
Ionic contaminants
Microbial population
Concentration of bacterial endotoxins
Water treatment
Chemical purity
Microbial purity
Pipework
Water supply by-laws
Water system tests
Water samples
Water quality tests
Choice of method
Water supply temperature
Apparatus
Method
Alternative method (for periodic testing)
Results
Water supply pressure
Apparatus
Method
Results
Appearance
Apparatus
Method
Results
pH
Apparatus
Method
Results
Electrical conductivity
Equipment and materials
Method
Results
Hardness (as CaCO₃)
Ion-selective electrodes (ISE) method
Titrimetric method
Results
Chloride
Ion selective electrode (ISE) method
Silver nitrate titration method
Results
Bacterial endotoxins
Total viable count
Chapter 1 Design and pre-purchase considerations

Purpose of washer-disinfectors

1.1 Washer-disinfectors are used to clean and disinfect items intended for re-use. They may be used in relation to both medical devices and medicinal products as well as other items.

1.2 The cleaning and disinfection process is intended to:
 - make the item safe for staff to handle;
 - make the item safe for use on a patient (after any necessary additional processing such as a terminal sterilization process), including, if appropriate, ensuring freedom from contamination that could lead to an erroneous diagnosis.

1.3 When items being cleaned and disinfected by a washer-disinfector are intended to be used again without further treatment (such as a terminal sterilization process), before being reused the washer-disinfector should produce an item that is microbiologically safe for its intended use.

1.4 When the items being cleaned/disinfected by a washer-disinfector are intended to be subjected to further processing (such as a terminal sterilization process) before being re-used the disinfection stage in the washer-disinfector should produce an item that is microbiologically safe to be handled during preparation for subsequent processing.

1.5 Washer-disinfector processing involves two distinct stages: cleaning and microbial inactivation. The latter can be achieved by disinfection, sterilization or both (disinfection followed by sterilization). Washer-disinfectors are used to decontaminate items intended for re-use by subjecting the items to an automated process of cleaning and disinfection. This is shown in Figure 1.

1.6 The efficacy of the cleaning stage of the process is of crucial importance to the successful outcome of the disinfection stage.

<table>
<thead>
<tr>
<th>Decontaminate</th>
<th>Clean</th>
<th>Disinfect and/or sterilize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical removal of gross soiling with copious quantities of water</td>
<td>Aqueous medium together with detergents, enzymatic cleaners, ultrasonication, water jets, etc. as appropriate</td>
<td>Thermal or chemical disinfection, as appropriate, to yield a product that is safe for reuse or safe to handle for inspection, reassembly, packing and sterilization before use.</td>
</tr>
</tbody>
</table>

Figure 1 Elements of the decontamination process

Choice of washer-disinfector

Categorisation of washer-disinfectors by nature of load to be processed

1.7 Washer-disinfectors may be categorised according to their intended use, i.e. the nature of the load they are intended to process.

1.8 Washer-disinfectors may be further defined both by their configuration/load handling system and by the nature of the operational process.

1.9 Washer-disinfectors may be used for processing a wide range of products used in clinical practice. Loads will include surgical instruments, anaesthetic equipment, bowls, dishes, receivers, utensils and glassware. Further information, including validation protocols can be found in BS EN ISO 15883.
Categorisation of washer-disinfectors by configuration/load handling type

1.10 Washer-disinfectors may also be categorized by their construction and the manner in which the load is processed through the machine.

Single-chamber machines

1.11 Single-chamber machines have one chamber in which the full range of process stages are carried out. They are machines in which all stages of the cycle are completed on one chamber load before another load can be processed in that chamber.

1.12 These might have either a single door through which both loading and unloading takes place (same side operation) or double doors with one door being used for loading and the other for unloading on the opposite side. The second is the preferred option as devices are reprocessed and loaded from dirty to clean environment.

Multi-chamber machines

1.13 Multi-chamber machines have more than one chamber where separate stages of the cycle are performed in each chamber. The full range of process stages is only completed when the load is delivered from the final chamber. The segregation of cycle stages may be determined by specific User requirements but, typically, the chambers will be dedicated to cleaning, disinfection and drying. Different loads may be processed concurrently. An extra chamber can be added either to improve throughput or for dedicated activities such as for ultrasonic cleaning. These machines will have doors at either end and at intermediate positions between chambers. The individual configuration must be assessed to suit the requirements of the reprocessing unit.

Conveyor machines

1.14 Washer-disinfectors of this type may find it difficult to meet the requirements of some validation and periodic tests and are thus not recommended. Current machines of this type should be replaced.

Thermal disinfection

1.15 In this process disinfection is achieved by the action of moist heat maintained on the surface to be disinfected at a particular temperature for a particular time. The combination of time and temperature should satisfy the A₀ requirement of BS EN ISO 15883-1 for disinfection to be achieved.

1.16 The A₀ concept is defined in BS EN ISO 15883-1. It is defined as the disinfection effect resulting from an exposure to 80°C for a period of 1 s for an organism with a z-value of 10°C. Time/temperature bands meeting the requirements of an acceptable A₀ of 600 are as follows:

<table>
<thead>
<tr>
<th>Exposure Time (Minutes)</th>
<th>Disinfection temperature band (°C)</th>
<th>A₀ Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>70 - 75</td>
<td>600</td>
</tr>
<tr>
<td>1</td>
<td>80 - 85</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>80 - 85</td>
<td>600</td>
</tr>
<tr>
<td>1</td>
<td>90 - 95</td>
<td>600</td>
</tr>
</tbody>
</table>

1.17 A recognised A₀ Value of 60 is seen as acceptable for devices that may come into contact with intact skin and are unlikely to contain a high number of heat resistant organisms. It is also acceptable where manufacturers’ instructions identify that prolonged exposure to the elevated temperature may cause damage to the device. An A₀ Value of 600 is recommended where possible for reprocessing of medical devices used for invasive procedures.

Drying

1.18 Drying of the load should be completed to remove all surface moisture and is deemed an integral part of the cycle unless specified for dedicated applications, usually by the circulation of hot air over the product or provided as a separate drying cabinet. For some products, for example, corrugated anaesthetic tubing, prolonged drying times are recommended and a separate drying cabinet,
manufactured for the purpose, can improve the productivity of the washer-disinfector.

1.19 A dry product can also be obtained by the flash evaporation of residual moisture from product items that are hot following a high temperature thermal disinfection stage.

When is a washer-disinfector required?

1.20 For many products used in healthcare practice there are two choices available:
- products intended for re-use after they have been decontaminated and subjected to any necessary reprocessing (for example terminal sterilization);
- single-use products, that is, to be discarded after use.

1.21 Products that are intended to be re-used should be decontaminated, in accordance with the manufacturer's instructions and national guidance, in one of the following ways:
- manual cleaning followed by disinfection and sterilization;
- machine cleaning followed by disinfection and sterilization;
- automated machine decontamination incorporating cleaning.

Note
Medical devices designated as single-use should never be re-used.

Choice of washer-disinfector

1.23 The choice of washer-disinfector should be determined by the nature of the loads to be cleaned and disinfected.

1.24 Purchasers should be aware that items suitable for a particular type of washer-disinfector might still require different operating cycles, which need to be specified before purchase and configured appropriately through a recognised validated process. Advice should be sought from the AE(D)/DE(W) at NWSSP-FS on load requirements/cycle configurations.

1.25 Guidance on the modification of operating cycles to suit different loads is given in Chapter 4, ‘Operational management’. Advice on individual cases should be sought, if necessary, from the AE(D) before any decision is made. Use should be made of the Technical Specification Template (TST) for washer disinfectors (see Appendix 2). The latest edition is available from NWSSP-FS.

1.26 Once the type of washer-disinfector has been decided, preliminary enquiries should be made with a number of manufacturers. The use of the TST will enable data provided by the tenderer on technical points as well as financial data to be compared. Not only will this enable the purchaser to confirm the acceptability of current services, spatial requirements and porterage but it will enable a like-for-like tender analysis to be made. Tender analysis will be best achieved by formalizing tender comparison with respect to performance and cost in all key areas. Qualifying statements by the tenderer should be taken into account and their effect on tender content or eligibility should be made prior to a choice being made.

1.27 The key points below should be considered when purchasing washer/disinfectors, to determine the exact customer requirements based on local environmental conditions, policy and engineering service provision.
- What are the actual User requirements?
- What is the capital budget available?
- What is the standard of the supply water serving the SSD?
- What actual space is available for planning?
- Where will the machines be located?
- Who needs to be consulted?
- Does the equipment comply with the latest standards and guidance?
- What machine should be purchased?
- What model and design is most appropriate?
- What is the local policy on procurement?
- What testing is required for the washer-disinfector selected?
- Who will carry out the validation and periodic testing?
- What chemical solutions (detergents etc) can be used and are they compatible with the process?
- What are the revenue costs?
- What are the possible future expansion/department refurbishments?

1.28 The dispensed volume of the chemical additives, e.g. detergents, including the accuracy and reproducibility of the dosing system(s), should be specified and configured as part of the IQ, OQ, PQ process. Any changes to chemical solutions used should be carried out in tandem with an appropriate validation process. Consultation with
NWSSP-FS is necessary prior to such alterations which may affect the efficacy of decontamination of the final product.

1.29 For washer-disinfectors employing jet-washing systems, the pump pressure and water flow are also critical variables. Water quality will also be a critical variable where water is used for cleaning or disinfection. Where drying is performed air temperature and air-flow rate are critical variables.

1.30 For ultrasonic cleaners, the frequency, amplitude and power are critical variables. For cleaning efficacy the following parameters may also be included: water temperature, detergent type and detergent concentration.

1.31 In all cases, the duration of each process stage should be determined with sufficient accuracy to ensure that consecutive cycles have the same efficacy.

Assessment of workload and throughput

1.32 Advice on equipment numbers and instrument throughput is included within Health Building Note 13 – ‘Sterile services department’.

Rigid endoscopes

1.33 Many rigid endoscopes and most of the reusable surgical accessories used for minimal access therapy (MAT) can withstand steam sterilization and may be processed through washer-disinfectors employing a thermal disinfection stage to make them safe to handle during packing, etc.

1.34 The washer-disinfector should be designed or adapted to ensure that during the flushing, cleaning, disinfecting and drying stages, process fluids (including drying) flow though the lumen(s) of the device.

1.35 Many washer-disinfectors can be equipped with dedicated load carriers to process rigid endoscopes, gas cannulae, etc. There are also a number of dedicated endoscope cleaners including ultrasonic cleaners.

1.36 The capacity of the washer-disinfector should be assessed on the number of items of each type that can be processed in a single load.

Powered devices

1.37 Some powered devices rely on the flow of a pressurised fluid or compressed air for operation, for example, dental handpieces, phaco handpieces, orthopaedic saws and drills. If such devices are to be processed through a washer-disinfector and the internal surfaces are to be flushed, they should be connected via dedicated connectors to ensure that process fluids flow through the lumen(s) of the device during the flushing, cleaning and disinfection stages. Flow and pressure through lumens should be in line with the manufacturer’s recommendations for the device. Specialist filtration of process fluids passed through fine lumens and powered devices may be necessary to avoid adverse effects on their performance.

Specification and contract

Introduction

1.38 This section discusses general specifications for washer-disinfectors and the steps to be taken in inviting tenders and issuing a contract.

CE marking

Preparing a specification

1.40 It is essential that the preparation of procurement specifications be carried out by a qualified and competent person. The purchaser should use the services of NWSSP-FS to prepare the TST in conjunction with the User and other interested concerns, e.g. Estates, AP(D), Infection Control, End User.

1.41 Purchasers should refer to BS EN ISO 15883 Parts 1 and 2, WHTM 01-01 Part B and the TST for washer-disinfectors when preparing a specification for a washer-disinfector.

Construction materials

1.42 Materials of construction should comply with the requirements of BS EN ISO 15883.

Integral air compressors

1.43 Washer-disinfectors might require a supply of compressed air for either the operation of valves and powered door systems and/or during the drying stage of the cycle.

1.44 When compressed air is intended to come into contact with the washed and disinfected product the compressed air supplied should be “medical grade”, i.e. it should be oil and particulate free, see Welsh Health Technical Memorandum 02-01 – ‘Medical gas pipeline systems’.

1.45 Built-in air compressors should be suitable for the duty imposed upon them.
Integral calorifiers and tanks

1.46 All integral calorifiers should conform to BS 853-1, and should be designed and constructed to allow thermal disinfection to be achieved throughout the calorifier and associated pipework before water/steam can be supplied to the washer-disinfector during the thermal disinfection and subsequent stages.

1.47 Water tanks within the washer-disinfector should be self-draining and located so that they are cleanable by the Operator and fitted with a drain down system which either works automatically when the machine is switched off or which is accessible to the User.

1.48 All tanks should be fitted with an overflow, see the Water Supply (Water Fittings) Regulations 1999.

1.49 When water is to be heated the heat source should be controlled by a thermostat and it should employ a heating medium as specified by the purchaser. The heat sources should be removable for replacement or maintenance purposes.

Dosing systems

1.50 The washer-disinfector should be fitted with not less than two systems for controlling the admission of chemicals (detergents, additives etc.) and should be provided with the facility for at least one additional dosing system to be fitted.

1.51 Each dosing system should be provided with means to adjust the volume admitted. Access to the means of adjustment should require the use of a key, code or tool. The means of adjustment can be manual or automatic.

1.52 The stage(s) in the process cycle at which each dosing system admits chemical to the washer-disinfector should be under the control of the automatic controller.

1.53 Each dosing system should be provided with means to determine the volume admitted and the time within the operational cycle when the admission occurred. This data should be available to the Operator.

1.54 Failure to admit the specified minimum volume should cause a fault to be indicated and a failure indication raised. Systems should also be checked manually as part of periodic testing/maintenance and included within the ‘Standard Operating Procedures’ of the department.

An example of an operative undertaking checks on chemical additive available

1.55 The accuracy and reproducibility of chemical dosing systems should meet the requirements of BS EN ISO 15883-2.

1.56 The washer-disinfector should be fitted with a system that will indicate when there is insufficient chemical(s) available for the next cycle and that cycle should not be allowed to start.

Door controls

Control of manually operated doors

1.57 An explanation of the manual action required to lock the door should be provided for the Operator. In addition, if the unlocking procedure is not the reverse of the locking procedure, there should be an indication to the Operator of the manual action required to unlock the door. The indication should be clearly displayed either on the door or on its handle or handwheel. Explicit instructions should be displayed on the facing panel adjacent to the door or on the Operator's control panel.

1.58 The door mechanism should be such that the force to be applied by an Operator in order to either lock or unlock the door does not exceed 250 N at the intended point of grip.

Control of doors in a double-door washer-disinfector

1.59 In double-door washer-disinfectors, the control initiating the automatic cycle should be at one end only. When the loading door is closed and locked, it should not be possible to open the unloading door until the washer-disinfector has completed a successful operating cycle, i.e. without showing a fault.

1.60 If a fault develops, it should only be possible to open the loading door.
1.61 It should not be possible for an Operator to open or close a door at the opposite end of the washer-disinfector or for more than one door to be open at one time.

1.62 A visual display should be provided at both ends of the washer-disinfector to indicate when the cycle is in progress.

1.63 The indication “cycle complete”, or an equivalent indication, should be cancelled when the unloading door is unlocked, and the loading door should remain locked until the unloading door has been locked again.

Loading systems

1.64 The washer-disinfector can be provided with carriers to locate the load during the washing and disinfection process. The use of such equipment can be considered at the procurement stage and a decision as to whether loading systems are beneficial should be based upon space available in loading/unloading areas, manual handling assessments and design of washer-disinfectors. When interchangeable load carriers and baskets are reprovided, each load carrier should be capable of being fitted and removed without the use of tools. Washer-disinfector loading systems should be designed with regard to the Manual Handling Operations Regulations 1992 (as amended).

1.65 When the washer-disinfector is supplied with a system for supporting the load/transferring the load into and out of the chamber, the following should apply:

- the load should be wholly supported and retained within the usable chamber space for the duration of the operating cycle;
- the force required by the Operator, either directly or by the application of a mechanical device supplied with the equipment, to remove the whole, or part, of the load from the chamber should not exceed 250 N when loaded and operated in accordance with the manufacturer’s instructions;
- the load carrier should either be retained in the chamber by a mechanism which is only released when the transfer system is in place, or remain stable when withdrawn for a distance equal to two-thirds of the chamber length, and be fitted with a retaining device, which has to be released if the load is to be withdrawn further.

1.66 Means should be provided such that the transfer of the load into and out of the chamber does not cause damage and wear to the chamber.

1.67 Systems which cause high levels of local stress, e.g. point loadings, might also initiate corrosion in stainless steel materials.

1.68 The system used to support the load should be constructed from durable, corrosion-resistant materials and should withstand, without damage, the environment within the chamber.

1.69 The system used should neither prevent the attainment of the pre-set cycle variables nor the free drainage of water from the load and the penetration of water/steam into the load. The load carrier(s) should be designed so that they cannot be mis-positioned in a manner that will prevent such attainment.

1.70 Any accessory used for handling the load which can be used outside the washer-disinfector, e.g. a trolley, should remain stable when it is supporting its maximum design load and a force of 250 N is applied horizontally in any direction to the highest point of the load or accessory.

1.71 The trolley should be designed to allow the operator to align the trolley with the washer-disinfector for ease of loading and unloading.

1.72 The trolley should be provided with means to collect liquid residues from the load to prevent these from dripping onto the floor. The means provided should be detachable for cleaning and disinfection in a washer-disinfector or, where necessary sterilization at 134–137º C in a porous load sterilizer.

1.73 The trolley should be provided with swivel wheels to facilitate manoeuvring.

1.74 The trolley should be provided with a parking brake.

1.75 The trolley should be designed to secure the load carriers on the trolley during loading and unloading, and while traversing a gradient at a slope of up to 1 in 20.

1.76 Trolleys intended for use with single door machines should be designed and constructed to facilitate cleaning and disinfection of the trolley between use for dirty and clean loads.

1.77 Load conveyors outside the washer-disinfector that are intended to, or might reasonably be expected to, come into contact with soiled/contaminated goods should be designed and constructed to be easy to clean and disinfect.

Cleaning the washer-disinfector

1.78 The design, construction and operation of the washer-disinfector should ensure that during the process the surfaces of the chamber and the load
carrier presented to the operator are cleaned and disinfected.

1.79 For manually filled and emptied cleaning machines with no disinfection cycle, for example, stand-alone ultrasonic cleaners, the manufacturer should advise on the cleaning/disinfection method.

1.80 Assurance should be obtained to confirm that any cleaning solutions applied are not detrimental to the material surfaces being cleaned. Reference to machine manufacturer's instructions should be sought prior to the introduction of new chemical solutions.

Steam

1.81 Steam may be used in a heat exchanger as a source of indirect heating for water or air to be used in the cleaning, disinfection or drying stages of a washer-disinfector operating cycle.

1.82 Steam may also be used to heat process water directly, or to heat the load directly during the thermal disinfection stage, and for this purpose may be supplied either with an integral steam generator or from an external (mains) supply.

Steam for indirect heating

1.83 Steam heat exchangers used for heating water or air may be of the shell, tube or plate design. In all cases, the steam supplied should be substantially free from non-condensable gases and free from oil since these contaminants seriously impair the efficiency of the heating process. The effect of thin films of air on the surface of the heat exchanger may increase heating costs by 25% or more.

1.84 The steam service should be designed to meet the maximum demand of the washer-disinfector, or bank of washer-disinfectors, while keeping the fall in pressure before the final pressure reducing system to no more than 10%. Tests should be carried out as part of the installation/operational qualification to verify that steam demand is sufficient to service all washer-disinfectors when they are all using steam at the identical stages of the operating cycle.

1.85 Except for vertical rises between floors or at intermediate points on long runs, the pipework should have a continuous fall so that any condensate flows by gravity in the same direction as the steam. Air vents and steam traps should be fitted at each vertical rise.

1.86 The condensate discharge system should be sized to ensure that the high volume of condensate found during the initial stages of heating can be discharged without waterlogging the heat exchanger.

1.87 When the steam supply pressure at the inlet to the washer-disinfector exceeds the maximum value specified by the manufacturer, a pressure reducing valve should be fitted to the supply pipe at least 3m from the washer-disinfector.

1.88 Careful attention should be paid to the siting of all pressure relief valves to ensure that the washer-disinfector is properly protected.

1.89 Relief valves and their discharge pipes should be large enough to prevent the pressure in the supply pipes rising to more than 10% above the design pressure for the heat exchanger. The discharge pipe should terminate in a safe position outside the building.

1.90 Steel and copper piping traditionally used for steam supply are acceptable for this application.

1.91 Excessive moisture in the steam supply will impair the heating efficiency of the heat exchanger and so should be avoided.

Integral steam generators

1.92 Some washer-disinfectors are equipped with small electrically heated steam generators to raise steam to heat the load directly for thermal disinfection.

1.93 They may be of the open-boiler type, which are so designed and constructed that they are unable to generate an internal pressure above atmospheric pressure. The design should ensure that, under a single fault condition, for example, obstruction of the steam discharge port, the boiler cannot become pressurised.

1.94 Integral steam generators which are pressure vessels should be in accordance with PD 5500.

Condensate recovery

1.95 Condensate from steam heating systems (calorifiers, dryers) and steam traps on the pipeline is suitable for recovery and should be returned to the steam generating plant when recovery is economically justifiable. It should not be possible to contaminate instruments if a failure of the heating coil occurs.

1.96 To ensure the condensate recovery system is operating as designed, routine monitoring and maintenance is essential and key components, such as steam traps and filters, installed should be inspected or replaced at pre-determined intervals or where they are defective.

Compressed air

1.97 A compressed air supply might be required for the operation of controls and air-drying. If the washer-disinfector does not contain an integral air
compressor, the air may be supplied from a piped service (mains supply) or from a local compressor.

Mains supply

1.98 If air is supplied by pipeline from a central air compressor system, a Bourdon-type pressure gauge conformant to BS EN 837-1 should be fitted on the supply line to the washer-disinfector via an isolation valve.

1.99 A reducing valve, or other automatic device, should be fitted to reduce the pressure of air delivered to the washer-disinfector to no more than the maximum supply pressure specified by the manufacturer. A pressure relief valve will normally be required.

Local compressor

1.100 When it is not practical to obtain compressed air from a mains supply, a dedicated compressed air system should be installed to supply the washer-disinfectors. Such systems should be adequately sized for optimum demand of all equipment supplied.

1.101 The compressors might be too noisy to install with the washer-disinfector and might need to be located in a dedicated location away from noise sensitive areas.

1.102 Components of the compressed air system that require servicing and maintenance, such as dryers and filters, should be located where they are readily accessible for service or exchange.

Air quality

1.103 The quality of air can be critical for some applications and some washer-disinfectors will incorporate appropriate filters. When the purchaser is to be responsible for the provision of filtered air the CP(D) should ensure that the quality of air available meets the washer-disinfector manufacturer’s specification or the requirements given below. Advice from NWSSP-FS should be sought in relation to appropriate air quality and risks during the decontamination process.

1.104 Air that could come into direct contact with the load, such as air used for drying the load or testing the free-passage of lumens, should be:

- oil-free, i.e. should have no more than 0.5 mg of oil per cubic metre of free air measured at 1013 mbar and 20°C; see ISO 554;
- filtered to an efficiency of at least 95% when tested in accordance with BS 3928; and
- free of bacteria, see Welsh Health Technical Memorandum 02-01.

1.105 Air for control purposes should be free of liquid water, filtered to 25 μm (5 μm for precision controls) and lubricated with micro-fog oil particles of 2 μm or less.

Drainage

1.106 All effluent from a washer-disinfector is potentially contaminated and should be disposed of to the main drain. All washer-disinfector and associated equipment should be connected to the drain in a manner that provides backflow protection and complies with local regulations.

1.107 Effluent can originate from each of the stages of the process, which may include:

- a. flushing to remove gross contamination;
- b. washing with detergent and/or enzymatic cleaners;
- c. rinsing, with or without the addition of a neutralizer, rinse aid or instrument lubricant;
- d. chemical disinfection or thermal disinfection;
- e. post-disinfection rinsing;
- f. drying particles.

1.108 Effluent from early stages (a) and (b) of the process might contain significant concentrations of organic contaminants and potentially infectious microorganisms. Effluent from the middle stages (b), (c) and (d) can contain some organic contaminants and potentially infectious microorganisms and high concentrations of process chemicals. Effluent from the latter stages (d), (e) and (f) can be at high temperatures (90°C–100°C).

1.109 Effluent from washer-disinfectors should pass via an air break into a tundish or tank before being discharged to drain. The air break should be preserved at all times to prevent the washer-disinfector and its associated pipework being contaminated by reverse flow from the drainage system.

1.110 Where a tank supplies water to a pump on the washer-disinfector, the overflow discharge from the tank should also include an air break.

1.111 The drainage system from the installation should be trapped and designed to pass the flow rate of water, air and condensed steam specified by the manufacturer, with account taken of the peak output during the operating cycle.

1.112 The drainage system should be designed to pass and maintain in suspension the solids removed from the load during the flushing process. The minimum diameter of the drainage system should be greater than the maximum diameter of the most restricted
section of the discharge from the washer-disinfector chamber.

1.113 Means should be provided to prevent, as far as possible, flash steam being liberated into the atmosphere or causing condensation on electrical equipment.

1.114 The discharge temperature from a washer-disinfector may be as high as 95°C.

1.115 The materials used for the construction of the discharge system should be chosen to withstand temperatures up to 100°C. Attention is drawn to the requirement of an organisation to comply with temperature restrictions identified in local water regulations. Historically the temperature of any liquid to be emptied into the public sewer or communicating drain was not to exceed 43°C. This should be interpreted as referring to the main building connection to the sewer and not to the internal building drain. However, if the installation is in a small medical unit, the drains may well connect directly to the main sewers and will therefore be subject to the temperature restriction.

Hazardous effluents

1.116 The discharge of soil from washer-disinfectors should be regarded as being no more, but no less, hazardous than the discharge from any other sanitary appliance, e.g. a WC.

1.117 The discharge of process chemicals, including detergents and microbicides, may require special attention. Consultation with chemical supplier should determine the likelihood and severity of hazardous effluents being discharged into the drain. The local water undertaking should be consulted if such chemicals are deemed hazardous to be discharged into the drainage system, as it may be necessary to neutralize or inactivate them before discharge.

Machine ventilation

1.119 Washer-disinfectors are often run under a slight negative pressure to minimise the potential for the discharge of aerosols into the environment.

1.120 Washer-disinfectors should be connected to a suitable extract system which should be dedicated for purpose and not connected to the general ventilation extraction system. The construction of the extract system should be of suitable non-corrosive material that can withstand temperatures >105°C. Washer-disinfectors not equipped with an air extract system may require siting under an extraction hood. The capture velocity in the vicinity of the process is a design issue based on a local assessment via design consultation. The advice of NWSSP-FS should be sought when designing the ventilation system.

1.121 Additional guidance is given in Part B of Welsh Health Technical Memorandum 03-01 – ‘Specialised ventilation systems in healthcare’.

Chemical additives: storage

1.122 Safe storage provision is needed for containers of chemical additives used in the washer-disinfector. These chemicals are frequently corrosive, irritant and toxic and provision should be made in, or adjacent to, the storage area for an emergency eye wash station and a source of running water to dilute any spillage. Reference should be made to local Control of Substances Hazardous to Health (COSHH) provisions.

1.123 In large installations, bulk storage tanks for chemical additives required for the process might be an option with a piped distribution system to each washer-disinfector. However, this is not always the preferred method of supply from the washer-disinfector manufacturer or the User. Where smaller dedicated container supply is preferred, care should be taken storing, handling and managing the batch of each chemical used during the decontamination process. COSHH assessments should determine Standard Operating Procedures (SOP) for each required chemical solution.

1.124 If central dosing tanks are installed for each chemical additive to be used, there should be two storage tanks in parallel (one of which might be a small reserve tank):

- to permit cleaning and maintenance of the large tank without interrupting the use of the washer-disinfectors;
- to facilitate segregation between separate batches of chemical additive; and
- to allow for an orderly change to a different formulation if required.

1.125 The liquid concentrates are often viscous and chemically aggressive. The pipework, valves, etc., used for the distribution of these chemicals will need to withstand the corrosive effects of these materials. Advice should be sought from the manufacturer of the chemical additives on suitable materials, construction and pumping systems for
the distribution system. Each dosing system should be clearly labelled for the appropriate chemical supplied.

Chemical additives

Introduction

1.126 Chemical additives are not necessary for all applications; while they can enhance the removal efficacy it is then necessary to remove them during the rinsing stage. For applications in the laboratory and in the preparation of components and equipment used in manufacturing medical devices and medicinal products, chemical additives should be avoided if their use is not essential.

1.127 In choosing the various chemical additives for effective cleaning and disinfection, the formulation of each chemical additive should be compatible with:

• the materials of construction of the washer-disinfector;
• the process being operated in the washer-disinfector;
• the quality of water available;
• the items to be processed and their intended use;
• any other additives to be used in the washer-disinfector process;
• any intended subsequent decontamination process (e.g. sterilization).

1.128 The required concentration should be accurately and reproducibly generated by the dosing system(s) on the washer-disinfector. Periodic tests should confirm the required dosing system is within tolerances expected and calibration of the system should be carried out where anomalies are identified.

1.129 It is not sufficient to determine only the compatibility of the principal active constituents, as the precise formulation of the chemical additive will affect its compatibility. Batch management of supply chemical is very important to ensure that solutions are within the recommended ‘use-by’ period. Failure to manage this may result in the use of process chemicals that are not as effective as intended and hence standards of decontamination are reduced.

Compatibility with the materials of construction of the washer-disinfector

1.130 The cleaning formulation should be appropriate for purpose and have no long term effects on the components of the washer-disinfector.

1.131 Chemical additives that can be absorbed into, or adsorbed onto, surfaces of the washer-disinfector, e.g. plastic pipework, may be carried over into subsequent stages of the process, see also next section and paragraph 1.139, ‘Compatibility with subsequent decontamination processes’.

Compatibility with the process

1.132 The performance of the additive should be matched to the physical characteristics of the operating cycle, e.g. jet-washing action systems require low foam detergents, if the washing action is not to be impaired.

1.133 All chemicals used during the decontamination process should be set up and configured to operate within optimum parameters that are known to be effective for process. Such settings are compatible with the washer-disinfector and the devices that are undergoing reprocessing. The washer-disinfector manufacturer and chemical supplier should have the relevant compatibility certificates based upon the type test data. No alterations should be carried out without the relevant validation tests to verify performance.

Compatibility with the items to be processed

1.134 The chemical additives used should be compatible with the materials of which the load items are constructed and should not cause short or long term chemical or physical damage, e.g. phenolic compounds used in detergents and disinfectants might cause material changes in rubber and plastics, while the anodic coating on the surface of anodized aluminium is removed by strongly acid or strongly alkaline compounds. Use of a rinse-free cycle for laryngeal masks may be considered.

1.135 The chemical additives and residues used should be readily removed from the load items by rinsing with water and should be biologically compatible with the intended use of the load items. Chemical additives that are intended to persist on the surface of items processed through the washer-disinfector, e.g. lubricants, should be biologically compatible with the intended use of the load items.

Compatibility with the quality of water

1.136 The activity of many detergents and disinfectants are seriously impaired by hard water.

1.137 Detergent formulations intended for use only with soft water might give rise to precipitation if used with hard water, particularly at elevated temperatures. Once this precipitation has occurred on the surfaces of the washer-disinfector or the
load it is particularly difficult to remove (see paragraph 1.34 ‘Compatibility with the items to be processed’).

Compatibility with other chemical additives

1.138 The additives used should be both compatible with other chemicals used in the same process stage and, as far as may be practicable, with those used in preceding and subsequent stages to minimize the adverse effect of any carryover.

Compatibility with subsequent decontamination processes

1.139 Chemical additives that might persist on the surface of items processed through the washer-disinfector should be compatible with any subsequent decontamination process that might be required, such as terminal sterilization. An in-process instrument lubricant that deposits a lubricant film on all surfaces of the instrument should only be used if it has been demonstrated to be compatible with any subsequent sterilization process.

1.140 The specified concentration and optimum conditions specified for chemical additives should be attained in order to ensure effective processing. Too little will impair the process, while too much is wasteful, might impair the process and might contribute to unacceptably high residual levels. Reprocessing out of the range of optimum performance may result in ineffective decontamination.

1.141 Suppliers of chemical additives should provide product data sheets and material safety data sheets for the products supplied. These should include details of biocompatibility studies. Reference should be made to local COSHH provisions.

1.142 Suppliers of chemical additives normally provide details of the analytical methods that can be used to detect residual concentrations of product. The sensitivity of the method should be sufficient to determine the presence of the compound below the level at which any adverse biological reaction would be determined.

Detergents

1.143 For most applications, mild alkaline detergents in the pH range 8.0–11.0 are preferred. Alkalinity improves the efficacy of detergents both by enhancing their inherent cleaning capabilities, neutralizing and helping to remove acid soils, emulsifying oils and fats and peptidising proteins, and by synergistic action with other detergent compounds. Many surfactants work better in the presence of alkaline “builders” such as sodium tripolyphosphate (STPP). Continuing research may provide evidence based on recommendations for the most appropriate composition of detergent solutions for cleaning medical devices. NWSSP-FS can provide advice on the use of such solutions as information is developed through ongoing national research and guidance.

1.144 Cleaning agents for use in washer-disinfectors should be:

- liquid (to facilitate accurate dispensing);
- appropriate for expected bioburden present on devices;
- compatible with devices to be processed;
- non-abrasive;
- low foaming;
- free rinsing;
- biodegradable.

Enzymatic cleaners

1.146 Enzymes are organic catalysts through which the normal metabolism of most living organisms takes place. Although produced by living organisms they are not themselves alive. They are large molecules whose steric configuration (shape) affords them the ability to catalyse many reactions in the living cell.
1.147 Enzymes are classified into groups depending on the nature of the chemical reaction that they catalyse. Generally the enzymes used in enzymatic cleaners are hydrolases, i.e. they promote the hydrolysis of the substrate with which they interact.

1.148 Enzymatic cleaners are themselves proteins and can be sensitising or allergenic agents.

1.149 A considerable proportion of the soiling found on medical items contains proteins that act as binding agents. Particulate dirt can be bound by the coagulation of these proteins on the surface.

1.150 If the binder proteins can be broken down into a simpler molecular form this binding action is destroyed and the bound soil, as well as the protein, can be released from the surface.

1.151 Formulations will often include buffering agents to maintain the pH within the preferred range. Most enzymes have an optimum pH at which their activity is greatest and a pH at which the enzyme itself is most resistant to thermal degradation, although these two values are not necessarily the same.

1.152 For example, the proteolytic hydrolase derived from Bacillus subtilis, subtilisin A, withstands temperatures up to 60°C and displays its greater stability at pH 9.4.

1.153 The importance of the enzymatic solution being at the correct temperature and pH, as well as being used for the specified contact time, cannot be too strongly emphasised.

1.154 Enzymes are not themselves cleansing agents. A properly balanced detergent might still be needed to remove the simpler molecular forms resulting from the enzymatic action.

1.155 Enzymatic formulations for cleaning solid surfaces are available in two forms:
 - a pre-soak formulation which is used to digest proteinaceous soil and is followed by normal washing process using detergent;
 - a combined enzyme and detergent formulation.

Cleaning additives for ultrasonic cleaners

1.156 Only detergents specifically intended for use in ultrasonic cleaners should be used. The use of other detergents can impair rather than enhance the cleaning process.

Rinse aids

1.157 Rinse aids are generally formulated from surfactants and are designed to reduce the surface tension of water present, thus making it easier to disperse any fluid present within the final stage of a process (e.g. drying).

Lubricants

1.158 The addition of oil-based compounds to the cleaning process is wrong in principle, as they cause contamination over the entire cleaned surface. Only the water-soluble type should be used. Mineral oils have poor biocompatibility and can inhibit the penetration of steam or sterilant gases on terminally sterilized product.

1.159 Lubrication should only be applied to those areas where it is required during the inspection/packing process after thorough cleaning of the instrument.

Disinfectants

Choice of disinfection method

1.160 Thermal disinfection using moist heat is the preferred method and should be used whenever it is compatible with the load to be processed.

1.161 Temperatures in excess of 65°C and up to 95°C (or in some cases 100°C) can be used for disinfection; the lower the temperature the longer the exposure time in order to obtain the same reduction in microbial population. The thermal disinfection process is reliable, reproducible, free from toxic residues and capable of easy and economical physical monitoring and recording.

1.162 Chemical disinfection should only be used for products that cannot be treated using thermal disinfection methods.

Materials compatibility

1.163 The disinfectant should not cause damage to either load items or the washer-disinfector in which it is used. Damage that may occur with incompatible disinfectants includes corrosion, embrittlement or swelling of plastics, degradation of lens cement in optical systems, etc. The potential for electrolytic attack to occur as a result of different metals in the load and the washer-disinfector coming into contact, via a powerful electrolyte, should not be overlooked.

1.164 The material of construction of the washer-disinfector and of the items in the load should not inhibit the disinfectant.

Safety of disinfectants

1.165 Many of the compounds that are most effective as disinfectants are potentially human health hazards. Employers are required by law to do everything that is reasonably practicable to protect the health of their workers and exposure limits to each solution should be documented. The safe use of
these compounds is covered by the Control of Substances Hazardous to Health (COSHH) Regulations (as amended). It should be noted that some disinfectants require dilution or activation before use.

Washer-disinfectors for surgical instruments and associated equipment

1.166 This section gives recommendations for washer-disinfectors used for cleaning and disinfecting surgical instruments and associated equipment including anaesthetic accessories, bowls, dishes, receivers, utensils and glassware.

1.167 The guidance given here assumes that the washer-disinfector is to be used during decontamination of medical devices and that the essential requirements of the EU directives are met. Further information and requirements can be found in BS EN ISO 15883 Parts 1 and 2 (latest version).

Single-chamber machines

1.168 Single-chamber cabinet washers for surgical instruments and associated equipment may be designed to accept interchangeable load carriers or removable shelving, typically with rotating spray arms or other devices to ensure a uniform wash action with several layers of load items.

1.169 The spacing between layers should be designed to accommodate a number of wire mesh baskets full of instruments or should be designed with a method to accommodate more widely spaced devices such as large bowls, instrument trays, reusable rigid containers and similar items. Consideration should also be given for anaesthetic accessories to be located and processed; this can be with the use of specialist carriers with connections for particular instruments such as rigid endoscopes, MAT instruments, lumen devices and powered devices.

1.170 Since all stages of the cycle take place in the same chamber, it is not possible to get physical separation between the dirty and clean stages of the cycle. Assurance that the load will not be recontaminated is dependent upon the efficacy of the cleaning and disinfecting stages in decontaminating the interior of the washer-disinfector as well as the load.

Multi-chamber machines

1.171 Continuous process washers, other than those designed as automatic ultrasonic cleaners only, are usually designed to accept interchangeable load carriers (see paragraph 1.168, ‘Single-chamber machines’). Where the first chamber is used for first (that is, cold) wash only there may be a build up of deposits, which will require additional cleaning at set intervals.

1.172 Compared with single-chamber machines they have a higher throughput and, for a similar process, achieve some decrease in overall cycle time.

1.173 Since the load is moved through the machine as the cleaning and disinfection cycles proceed it is possible to get excellent physical separation between dirty and clean load items.

1.174 There may be some loss of operational flexibility when this type of machine is used for several applications at a time; for example, if it is used to process anaesthetic accessories, the increased drying time, necessary for this application, will slow the passage of other loads passing through the washer-disinfector.

1.175 Washer-disinfectors of this type are large, expensive pieces of equipment and they should only be used in centralized production units. When contemplating installing this equipment contingency arrangements should be considered, both within the department or outside, in event of breakdown, testing or other issues that may halt normal production. Such installations are usually installed in parallel with a number of single chamber pass through washer-disinfectors.

Standard specifications

1.176 Washer-disinfectors for surgical instruments and associated equipment should conform to the latest versions of BS EN ISO 15883 Parts 1 and 2 and the safety specifications in BS EN 61010-1.

1.177 Use should be made of the ‘Technical Specification template’ for washer-disinfectors see Appendix 2. The latest edition is available from NWSSP-FS.

Load-handling equipment

1.178 A number of different types of carrier can be used to accommodate the range of items to be processed. The range of carriers that might be necessary for an SSD includes:

- a multi-layer carrier for instruments in wire mesh baskets (wire-mesh baskets to include a number with retaining systems for small instruments);
- a two layer carrier for small hollowware and instrument trays;
- a single layer carrier for large bowls, Edinburgh trays, etc;
• a rigid endoscope/MAT instrument/lumen device carrier;
• an anaesthetic accessories carrier;
• sterilization containers;
• carrier with dedicated connectors for powered devices.

1.179 The design of designated load carriers should protect instruments from mechanical damage during the wash process and should also orientate the instruments to facilitate proper cleaning providing, when necessary, a direct connection between the water flow and the lumen of the load item.

1.180 The specification for load handling equipment should include the provision of appropriate tabling to permit sorting of instruments and loading of load carriers and, after processing, the unloading of load carriers.

1.181 When double-door washer-disinfectors are used, means should be provided to return load carriers from the unloading to the loading end. Where this passes through the wall between the packing room and decontamination room, there should be a pass-through hatch with interlocked doors.

Test connections

1.182 Test connections should be provided at practical locations to permit the connection of thermocouples and pressure transducers to be used during validation and periodic testing.

1.183 When additional monitoring is provided, a separate test connection should be provided for each sensor to permit periodic verification of the installed system by comparison with a calibrated test sensor.

Ultrasonic cleaners

Note
Within SSD applications, the installation and use of Ultrasonic cleaners are for pre-cleaning activities, prior to decontamination in a validated washer-disinfector.

1.184 The guidance given here assumes that the washer-disinfector is to be used to clean and disinfect medical devices and that the essential requirements of the EU directives are to be met.

1.185 Ultrasonic cleaners may be Type 1 or Type 2 machines (ultrasonication may be integrated into a Type 2 washer-disinfector).

1.186 Ultrasonic cleaners work by exposing the items to be cleaned to high frequency sound waves in the liquid cleaning medium. The high frequency sound waves are generated within the liquid by the vibration of one or more surfaces of the bath, which is caused by one or more transducers bonded to the outer surface(s). The transducers convert electrical power into vibrations of the required frequency and amplitude. The highly effective cleaning action occurs as a result of the penetrative agitation caused by cavitation, the rapid formation and collapse of tiny bubbles within the liquid, which are generated by the high frequency sound waves.

Applications

1.187 Ultrasonic treatment is particularly suitable for cleaning instruments of high-grade steel. Delicate instruments such as micro-surgery instruments and dental instruments can be effectively cleaned with little risk of damage.

1.188 Ultrasonic treatment is also particularly effective for cleaning instruments that have deep interstices that may be contaminated with body tissues, for example reamers, drills and burs.

1.189 When combined with appropriate connection to an irrigation or flushing system, ultrasonicators are also effective for cleaning internal and external surfaces of cannulated instruments.

1.190 Ultrasonic cleaners are less effective when used to clean plastic and similar readily compressible materials since they absorb much of the ultrasonic energy.

Standard specifications

1.191 Safety specifications for ultrasonic cleaners are included in BS EN 61010-1.

Additional specifications

1.192 The ultrasonic cleaner should be fitted with means to drain the tank with the cleaner in situ. The tank should be free draining so that no pools of water are left in the tank after draining.

1.193 The tank should be heated electrically and the heaters should be thermostatically controlled.

1.194 The ultrasonic cleaner should be fitted with a timer to control the duration of exposure.

1.195 The ultrasonic cleaner should have a lid; the lid should be interlocked with the operating system to prevent normal operation if the lid is open and should fit securely to prevent the emission of aerosols when the cleaner is in operation.

1.196 The lid interlock should ensure that no part of the Operator’s body can be immersed in the ultrasonic cleaner during operation.

1.197 The ultrasonic cleaner should be effectively insulated to prevent high frequency sound
transmission at a power that could cause a health hazard. The casing and lid should provide adequate sound proofing so that harmonic frequencies within the audible range are not obtrusive.

1.198 The manufacturer will normally recommend the chemical additives (detergents/enzymatic cleaners) that are compatible with the process. Low foaming detergents should be used. Liquid detergents used for washing dishes (‘washing-up liquid’) are not suitable.

1.199 The manufacturer is obliged to specify how the cleaner may be disinfected. This might be by the provision of a high-temperature (for example 80°C) cycle option, or by means of a suitable disinfectant solution. In the absence of guidance, the Microbiologist or Infection Control team should be asked to advise on a suitable procedure.

1.200 The manufacturer is also obliged to specify the degassing time(s) to be used on start-up and, when necessary, between each load of instruments processed.

Wash cycle

1.201 The ultrasonic frequency used should be within the range 35 kHz ± 5 kHz and the energy input used may range from 5 W L⁻¹ to 20 W L⁻¹.

1.202 Ultrasonic cleaners can be designed to operate at a single frequency, across a frequency range, or with a feedback control system claimed to adjust the frequency in response to the loading conditions.

1.203 For medical applications aqueous solutions should be used. Although ultrasonic cleaners containing aqueous solutions can be effective at temperatures up to 90°C it is normal practice to operate those for medical applications at temperatures between ambient and 40°C. This minimizes the rate of coagulation of proteinaceous material in the soiling and is compatible with the use of enzymatic cleaners, many of which are rapidly destroyed at higher temperatures.

Type 1 and Type 2 ultrasonicators

Type 1 ultrasonicators

1.204 A mechanical lifting device should be used when the ultrasonicator is intended to process heavy sets of instruments.

1.205 The load container, usually a wire mesh basket, should be of appropriate size and construction for the longest instrument to be processed.

1.206 When it is intended to process micro-surgical instruments or instruments with fine points the load handling equipment should provide means of retaining these in position so that the points are not blunted by the impacts resulting from fine mechanical shaking.

Type 2 (continuous process) ultrasonicators

1.207 Continuous process washer-disinfectors may incorporate an ultrasonic cleaning stage within the cycle programme.

1.208 Ultrasonic cleaners are also available in continuous process format with a thermal disinfection stage and with the option to provide a hot air drying stage.

1.209 Ultrasonic cleaners with a solvent drying stage are no longer commercially available since the solvents used were CFCs, which are now prohibited under the Montreal Protocol.

1.210 If complex tabling or conveyors are required these should be specified, and preferably illustrated with a sketch plan, when seeking tenders.

1.211 When it is intended to process micro-surgical instruments or instruments with fine points the load handling equipment should provide means of retaining these in position so that the points are not blunted by the impacts resulting from fine mechanical shaking.

1.212 The ultrasonic cleaner should be fitted with a temperature indicator; provision should be made for a recorder to be fitted if requested by the purchaser.

1.213 The ultrasonic cleaner should be fitted with an indicator to show the power consumption (in watts), or electrical demand (in amps) of the ultrasonic transducers; provision should be made for a recorder to be fitted if requested by the purchaser.
2.1 Washer-disinfectors are used to carry out the processes of cleaning and disinfection consecutively. These processes require validation to demonstrate they will consistently clean and disinfect all instrument scenarios likely to be presented including those most difficult to clean and disinfect. Choice of test loads and dryness of soils need careful consideration to ensure that this objective is met.

Note
Validation - A documented procedure for obtaining, recording and interpreting the results required to establish that a process will consistently yield product complying with predetermined specifications.

2.2 In some instances a visual inspection for residual contamination may be considered sufficient for monitoring the adequacy of the cleaning process before use. However, this is not true in all cases; for example, visual inspection will not detect soiling on the internal surfaces of instruments with lumens and will not detect low, but potentially significant, concentrations of soiling (for example, proteins) or residual chemical additives from the washer-disinfector remaining on load items.

2.3 There is no simple method to verify by inspection or test the efficacy of the disinfection process on product prior to use.

2.4 In consequence, cleaning and disinfection processes should be validated before use, the performance of the process should be monitored and validated during routine use, the calibration of controls and instrumentation should be verified, and the equipment should be subjected to a suitable maintenance programme.

2.5 The control protocols recommended in this section provide the means for ensuring that the washer-disinfector is fit for its intended purpose and includes tests and checks carried out during manufacture, after delivery, during validation and periodically thereafter. Tests are also recommended before a washer-disinfector is returned to service after repairs that affect one or more components which influence the attainment of critical process control variables or after modification.

Interrelation of test programmes

2.6 The tests recommended in this section are intended for use in type tests, works tests, commissioning (installation and operational tests), PQ (thermometric tests, microbiological tests, cleaning efficacy tests and load dryness tests) and routine periodic tests.

2.7 The interrelationship of the various test programmes, the place where they would usually be conducted and the responsibility for conducting the tests are shown in Figure 2.

Table: Location of Tests

<table>
<thead>
<tr>
<th>Location</th>
<th>Production of washer-disinfector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Production</td>
<td>‘One off’ WD</td>
</tr>
<tr>
<td>Type Test - Works Test</td>
<td>Type Test</td>
</tr>
<tr>
<td>Factory</td>
<td>Responsibility</td>
</tr>
<tr>
<td>Manufacturer</td>
<td></td>
</tr>
<tr>
<td>On-Site</td>
<td>INSTALLATION OPERATIONAL</td>
</tr>
<tr>
<td>VALIDATION</td>
<td>PERFORMANCE QUALIFICATION</td>
</tr>
<tr>
<td>User</td>
<td>PERIODIC ROUTE TESTS</td>
</tr>
<tr>
<td>ANNUAL REVALIDATION TESTS</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Inter-relationship of test programmes

2.8 The programmes of tests should be applied to all washer-disinfectors where relevant. Details are given under the test schedules for particular types of washer-disinfector.

Schedule of type tests and works tests

2.9 The manufacturer will carry out type tests on representative samples of washer disinfectors in serial production to demonstrate compliance of the washer-disinfector design with BS EN ISO 15883 Parts 1 and 2.
2.10 The manufacturer will carry out works tests on each washer-disinfector before it leaves the manufacturing site to ensure that each washer-disinfector meets the specification. These tests should be as given in BS EN ISO 15883 Parts 1 and 2 including any additional tests required by the User and NWSSP-FS. Failure to undertake these tests or produce documentation to support individual 'works tests' on each washer-disinfector, will result in the manufacturer/supplier being held completely responsible for any issues identified within the IQ/OQ/PQ testing.

2.11 The manufacturer should make the results of type tests and works tests available to the purchaser on, or before, delivery of the washer-disinfector. Such results can be requested by the purchaser as part of the specification for tender or purchase.

2.12 It may be necessary for the purchaser, or their representative, to visit the manufacturer's works to witness works testing. The advice of NWSSP-FS should be sought. Factory testing is a method of assessing functionality only, performance testing at the individual site will be required to verify individual washer-disinfector performance.

Schedule of installation tests

Checks on ancillary equipment

2.13 Ancillary equipment should, whenever practicable, be installed and commissioned before validation of the equipment begins.

2.14 When the checks on ancillary equipment require the washer-disinfector to be in operation, the washer/disinfector manufacturer/installer should carry them out in co-operation with the CP(D) or NWSSP-FS.

2.15 The manufacturer/installer of the equipment should clearly identify the service requirements at the site visits prior to installation. The correct functioning and supply of services and ancillary equipment should be the responsibility of the local estates/contract organisations unless alternative arrangements were agreed in the purchase contract.

Engineering services

2.16 Checks should be made for the following services:
 a. the engineering services should be installed correctly, should be adequate to meet the demands of the decontamination equipment, should not leak and all necessary isolating valves-switches and test points should be installed;
 b. the drains should remove effluent effectively when all plant in the vicinity, including the decontamination equipment, is connected and operating;
 c. the water treatment plant (if fitted) should operate correctly and the quality of water supplied for each stage of the process should be in accordance with the specification;
 d. the water economy system (if fitted) should operate correctly;
 e. the provision for storage, handling and connection to the washer-disinfector for all process chemicals should meet the requirements for safe handling of potentially hazardous chemicals;
 f. the exhaust ventilation and/or condenser unit fitted to the washer-disinfector should be adequate to remove the hot, humid air evolved from the washing, thermal disinfection and drying and unloading processes;
 g. for washer-disinfectors employing volatile process chemicals, the exhaust ventilation should maintain the environmental concentration below any limit specified for occupational exposure and the discharge should be to a safe place.

Checks on washer-disinfectors

Preliminary checks

2.17 Check that the electrical equipment on the equipment is correctly connected to the electrical service. Carry out the following electrical tests:
 a. insulation resistance;
 b. phase sequence (for three-phase installations);
 c. polarity;
 d. bonding and earth continuity;
 e. emergency stop.

2.18 After the equipment has been installed, check that the following recommendations are met:
 a. the manufacturer has supplied all the documents specified in the contract;
 b. the equipment has been supplied and installed in accordance with the contract;
 c. calibration verification certificates for the measuring instruments and controller(s) on the equipment have been supplied;
 d. no defects are apparent from a visual inspection of the equipment;
 e. all supports, bases and fixings are secure and without imposed strain from service connections;
f. thermal insulation is in good condition and securely attached for all relevant hot water/steam services;

h. keys, codes or tools required to operate locked controls and control over-rides have been supplied, operate correctly and only operate the control for which it is intended; and cannot unlock controls on other machines in the vicinity;

i. loading conveyors and trolleys, load carriers and load baskets are effective and safe in use;

j. All appropriate connections for irrigation are available.

Functional checks

2.19 During an operating cycle, with an empty chamber, check that the following recommendations are followed (several cycles may be necessary to complete all the checks):

a. The selection of automatic or manual control is by key code or tool. The selection of one control mode inactivates the other control mode;

b. Under automatic control, water, steam, compressed air or chemical additives cannot be admitted into the chamber, and the operating cycle cannot start until the door is closed (locked and sealed);

c. Under manual control the operator can advance the cycle only sequentially through each stage. Any stages designed to remove chemical additives from the chamber and load cannot be circumvented;

d. Throughout the cycle the indicated and recorded values of cycle variables are within the limits specified by the manufacturer;

e. Throughout the cycle there are no leaks of water, steam aerosols, toxic chemicals, air, gas or effluent;

f. There is no evidence of interference to or from other equipment connected to the same services;

g. There is no evidence of electromagnetic interference to or from other equipment;

h. Operation and reading of all instruments appear to be satisfactory;

i. The temperature of surfaces routinely handled by the operator does not exceed those specified in Chapter 1, ‘Design and pre-purchase considerations’;

j. The effluent temperature does not exceed that specified in Chapter 1.

2.20 At the end of the cycle check that the following recommendations are followed:

a. The door opening system cannot be opened until the cycle has been completed without causing the cycle to abort and a fault/incomplete cycle indication produced, that is, the automatic controller has operated in accordance with its specification;

b. The door opening system cannot be operated where there is a mechanical process underway e.g. washing action, unless as part of the engineering override facility with appropriate access coding;

c. the door retaining parts cannot be released until the seal between the door and chamber has been released;

d. The door interlock system should be set up and continuously maintained and verified as required by BS EN ISO 15883 parts 1 and 2 (latest version) and the safety requirements of BS EN 61010-2-040;

e. The automatic controller has operated in accordance with the parameter values determined at validation.

Response to external faults

2.21 The decontamination equipment should be checked to ensure it reacts correctly and safely when exposed to a number of external fault conditions; that is, a safety hazard is not created and a false indication of satisfactory completion of a cycle is not obtained.

2.22 During each stage of an operating cycle, check the response of the decontamination equipment to the following simulated faults (as appropriate to the type of machine):

a. operation of the emergency stop button;

b. power failure;

c. water pressure too low;

d. water pressure too high;

e. steam pressure too low;

f. steam pressure too high;

g. compressed air pressure too low;

h. compressed air pressure too high;

j. failure of chemical additive supply (detergent, sterilant, disinfectant, etc.);

k. failure of extract ventilation;

l. communication systems failure.
Schedule of operational tests

2.23 Full testing protocols for washer-disinfectors for surgical instruments, anaesthetic equipment, bowls, dishes, receivers, utensils and glassware can be found in BS EN ISO 15883 Parts 1 and 2.

2.24 Protocols for washer-disinfectors are shown in Table 1.

<table>
<thead>
<tr>
<th>Installation tests – contractor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Verification of calibration</td>
<td></td>
</tr>
<tr>
<td>2. Automatic control test</td>
<td></td>
</tr>
<tr>
<td>3. Water quality tests – Hardness (as CaCO₃)</td>
<td></td>
</tr>
<tr>
<td>4. Water supply temperature</td>
<td></td>
</tr>
<tr>
<td>5. Water supply pressure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operational tests – CP(D)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Weekly safety checks</td>
<td></td>
</tr>
<tr>
<td>2. Automatic control test</td>
<td></td>
</tr>
<tr>
<td>3. Verification of calibration</td>
<td></td>
</tr>
<tr>
<td>4. Water system:</td>
<td></td>
</tr>
<tr>
<td>– overflow test</td>
<td></td>
</tr>
<tr>
<td>– volume of water used per stage</td>
<td></td>
</tr>
<tr>
<td>– chemical purity</td>
<td></td>
</tr>
<tr>
<td>– bacterial endotoxins</td>
<td></td>
</tr>
<tr>
<td>5. Drainage:</td>
<td></td>
</tr>
<tr>
<td>– drain seal integrity</td>
<td></td>
</tr>
<tr>
<td>– free draining</td>
<td></td>
</tr>
<tr>
<td>– efficacy of discharge</td>
<td></td>
</tr>
<tr>
<td>– Estimation of dead volume of pipework</td>
<td></td>
</tr>
<tr>
<td>6. Venting system:</td>
<td></td>
</tr>
<tr>
<td>– load contamination from ductwork</td>
<td></td>
</tr>
<tr>
<td>7. Doors and door interlocks</td>
<td></td>
</tr>
<tr>
<td>– In-cycle interlock</td>
<td></td>
</tr>
<tr>
<td>– Double-door washer-disinfectors</td>
<td></td>
</tr>
<tr>
<td>– On sensor failure</td>
<td></td>
</tr>
<tr>
<td>– Door opening force</td>
<td></td>
</tr>
<tr>
<td>– Failed cycle interlock</td>
<td></td>
</tr>
<tr>
<td>– Fault indication on sensor failure</td>
<td></td>
</tr>
<tr>
<td>8. Water vapour emissions test</td>
<td></td>
</tr>
<tr>
<td>9. Chemical additive dosing tests:</td>
<td></td>
</tr>
<tr>
<td>– reproducibility of volume admitted</td>
<td></td>
</tr>
<tr>
<td>– Indication of insufficient chemical additives</td>
<td></td>
</tr>
<tr>
<td>10. Load carriers</td>
<td></td>
</tr>
<tr>
<td>11. Air quality</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 Testing protocols for washer-disinfectors

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Cleaning efficacy test:</td>
<td></td>
</tr>
<tr>
<td>– test soil</td>
<td></td>
</tr>
<tr>
<td>– method for reference load</td>
<td></td>
</tr>
<tr>
<td>13. Chamber wall temperature test</td>
<td></td>
</tr>
<tr>
<td>14. Load carrier temperature test</td>
<td></td>
</tr>
<tr>
<td>15. Over-temperature cut-out test</td>
<td></td>
</tr>
<tr>
<td>16. Thermometric test for disinfection</td>
<td></td>
</tr>
<tr>
<td>reference load</td>
<td></td>
</tr>
<tr>
<td>17. Load dryness test</td>
<td></td>
</tr>
<tr>
<td>reference load</td>
<td></td>
</tr>
<tr>
<td>18. Test for ultrasonic activity</td>
<td></td>
</tr>
<tr>
<td>19. Process residue test</td>
<td></td>
</tr>
<tr>
<td>1 Only required for washer-disinfectors with automatic chemical dosing</td>
<td></td>
</tr>
<tr>
<td>2 Only required for washer-disinfector with a thermal disinfection stage</td>
<td></td>
</tr>
<tr>
<td>3 Only required for washer-disinfectors with a drying stage</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Checks are also required on the independent monitoring system, including calibration, limits and trip points/alarm actions

Performance Qualification tests

Surrogate devices

2.25 Many of the devices that constitute the most difficult loads to process in a washer-disinfector, which therefore require PQ, are difficult to monitor either thermometrically or microbiologically, are in short supply and are extremely expensive; examples include fibre-optic endoscopes, videoscopes.

2.26 A surrogate device is a test piece designed and constructed to emulate the characteristics of a device to facilitate appropriate monitoring of the cleaning and disinfecting processes.

2.27 An example of a surrogate device might be a rigid endoscope emulated by a similar length of stainless steel tube of appropriate diameter and bore. The surrogate device can be constructed to incorporate the appropriate temperature sensors and so that it can be separated into sections to facilitate the evaluation of residual test soil or survivors from a microbial challenge.

2.28 The surrogate device should have similar geometry and thermal mass and, as far as practicable, should be constructed of the same materials and with the same surface finishes as the device it is designed to emulate.

2.29 When an instrument presents particular problems in validation the manufacturer of the instrument should be requested to provide details of the method by which they recommend that PQ studies should be performed.

Cleaning efficacy tests

Representative soiling

2.30 Cleaning efficacy tests are intended to demonstrate the ability of the washer-disinfector to remove or reduce, soiling and contamination that occurs during normal use of reusable items to acceptable levels.

2.31 Naturally occurring contamination shows considerable variation both in the nature and proportion of constituents and in the extent of soiling which can occur during use.

2.32 Test methods based on the detection of naturally occurring soiling are difficult to standardise and show poor reproducibility due to:

- variation in the composition of the soiling, which can affect the ease with which soiling is removed;
- changes in sensitivity of detection that can occur due to variation in composition of the soiling;
- variation in the extent of soiling.
2.33 A number of methods exist for estimating the residual levels of proteins on surgical instruments.

2.34 Common practice in the past has been to rely solely upon visual inspection to detect unacceptable levels of residual soiling. This method should not be used, as it has poor sensitivity, is very subjective and can be greatly influenced by a number of factors including the intensity and nature of the illumination in the inspection area.

Note
The development path for this guidance recognises the current work in the piloting of high sensitivity post-decontamination protein quantification tests. As these become validated and available, this guidance will be amended to incorporate their use. Advice on latest research and guidance can be obtained from NWSSP-FS.

Test soils

2.35 Artificial test soils are designed to simulate the nature of native soiling and to be equally or more difficult to remove.

2.36 Appropriate marker substances should be incorporated to provide improved sensitivity of detection.

2.37 Soil tests may be used to aid determination of loading levels.

2.38 Test soils avoid any hazard that might be associated with native soiling, for example blood-borne viruses, which can be of particular concern with the more extensive handling necessary for test work.

2.39 Worldwide, many different test soils have been specified for testing washer-disinfectors but they generally fail to meet the key criteria necessary for a test soil. These criteria include:

- a chemically defined formulation (the traditional soils use substances such as flour, wallpaper paste, fresh egg yolk, horse blood, which introduce a significant variability);
- a quantitative method of applying the test soil to the surfaces of all types of item to be processed;
- a quantitative method of detection of soiling remaining after the washing–disinfection process;
- validation with a known relationship to native soiling for ease of removal, relevant residual levels etc;
- safe to handle, easy and economical to use.

Standard test soils

2.40 Test soils are defined in ISO/TS 15883-5 as follows:

<table>
<thead>
<tr>
<th>Instrument type</th>
<th>ISO/TS 15883-5 Annex reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical instruments</td>
<td>Annex N – see description below</td>
</tr>
<tr>
<td>Anaesthetic accessories</td>
<td>Annex O</td>
</tr>
</tbody>
</table>

2.41 The procedures within the UK are described as follows:

Typical test soil

Constituents

2.42 The following ingredients are required:

- a. fresh egg yolk 100 mL;
- b. defibrinated blood, 10 mL (horse or sheep);
- c. dehydrated hog mucin 2 g.

Preparation and storage

2.43 Mix all the constituents together and agitate in a stomacher to give a liquid of uniform consistency.

2.44 Use immediately or store in an air-tight container at 2°C to 5°C for not more than one week.

Application and use

2.45 If the soil has been stored, allow it to equilibrate to room temperature before use.

2.46 The following apparatus is required:

- paintbrush, 25 mm in width, soft;
- disposable gloves, for example, latex;
- drainage tray.

Method of application

2.47 The method is:

a. Don the protective gloves. Apply the soil to the test pieces by fully immersing the items in the soil or, for larger items, applying an even coat of soil using the paint brush.

b. Allow excess soil to drain from the items and allow them to dry at room temperature (15°C to 25°C) for not less than 30 minutes and not more than 2 hours.

Method of detection

2.48 Visual examination. There are alternatives available. The advice of the AE(D) should be sought.
Process residues

2.49 The nature and level of process residues that are of concern depend on the chemical additives and quality of water used during the process and the intended use of the washed and disinfected product.

2.50 The water used for the process can give rise to a number of chemical residues on processed items. The most obvious of these is limescale from hard water which, within extreme levels, can lead to scaling of devices to be processed, heating elements, internal chambers of the washer-disinfector and can, additionally, react with chemicals used within the process.

2.51 The water used for the decontamination process might also give rise to contaminants of microbial origin. It is important to consider risks from various contaminants in localised water supply to patients, medical devices reprocessed and equipment used as part of the decontamination cycle. For further details see Chapter 3 ‘Water supply’.

2.52 Items intended for surgically invasive use or for the preparation or administration of parenteral fluids should have suitably controlled levels of bacterial endotoxins.

2.53 The chemical additives used during the process, detergents, rinse aids, etc., might not be completely removed by the rinsing process. The residual level that may be tolerated depends upon the nature of the chemical and the intended use of the product. The supplier of any chemical agent used will normally provide data on the chemical composition of the chemical agent and the biocompatibility of the components of the chemical agent. The supplier will also normally provide details of the method of detection, which can be used to determine whether processed items are free from residuals at the specified levels.

Disinfection

Thermometric tests

2.54 Thermometric tests should be carried out for both thermal disinfection processes and chemical disinfection processes.

2.55 The requirements for thermal disinfection are defined in BS EN ISO 15883 parts 1 and 2.

2.56 Normally, microbiological testing is not recommended for thermal disinfection processes.

Load dryness tests

2.57 The presence of residual water on cleaned and disinfected items should be avoided as it can interfere with the correct functioning of the item, promote re-contamination and microbial growth, or prevent attainment of sterilizing conditions. In many cases this data will already be available from the published literature.

2.58 The ability of the washer-disinfector to dry the load can be evaluated either visually, when appropriate, or by drying to constant weight and determining the mass of residual water present at the end of the washer-disinfector process cycle. Drying times should be set to ensure an acceptable dryness level at cycle conclusion. This should be set up as part of the commissioning process and not adjusted unless as part of a validated process after consultation with NWSSP-FS.

2.59 Performance qualification tests are shown in Table 2.

| Cleaning efficacy test for a full load of particular items not represented adequately by the reference load: – test soil |
| Load dryness test for a full load of particular items not represented adequately by the reference load |
| Process residues: chemical additives |
| For temperature of internal surfaces of processed devices (e.g. anaesthetic and respiratory tubing, lumen devices and powered devices), see BS EN ISO 15883-2 clauses 4.4 and 6.3.3 |
| For cleaning efficacy test for internal surfaces of processed devices, e.g. anaesthetic and respiratory tubing, lumen devices and powered devices, see BS EN ISO 15883-2 clause 4.4 and 6.2 |
| For verification of flow through lumen and powered devices, see BS EN ISO 15883-2 clauses 4.4, 5.1.1, 5.1.2 and 6.3.3 |

Table 2 Performance qualification tests for washer-disinfectors (carried out by the CP(D))

Schedule of periodic tests

Introduction

2.60 Periodic tests are carried out at daily, weekly, quarterly and yearly intervals. Whilst protocols are defined in BS EN ISO 15883 Parts 1 and 2, it is recommended that periodic testing is performed as defined in Table 3.

2.61 The yearly test schedule is identical to that required for revalidation. It contains the tests recommended for re-commissioning and for re-qualification of the performance of the equipment.
2.62 Tests should only be undertaken after completion of the planned maintenance tasks described in Chapter 4, ‘Operational management’.

2.63 Each test is cross-referenced to a detailed description of the test procedure in paragraph 2.72, ‘Test methods’. Unless otherwise specified in ‘Test methods’, the tests should be carried out with the machine at normal working temperature, which might require a warm-up run to be carried out before commencement of testing.

2.64 A number of the tests recommended can be carried out concurrently on the same operating cycle and this is also indicated in ‘Test methods’.

2.65 The results of periodic tests should be filed securely, for example, in the plant history file.

Weekly safety checks

2.66 The CP(D) should make the following safety checks before starting the sequence of weekly tests:
 a. examine the door seal(s);
 b. check the security and performance of door safety devices.

2.67 For equipment that includes a pressure vessel or pressure system, for example, steam or compressed air, the following checks should be made:
 a. that safety valves or other pressure limiting devices are free to operate;
 b. any other checks required by the Competent Person (Pressure Systems) CP(PS) in connection with the written scheme of examination for the pressure vessel.

Yearly safety checks

2.68 In order to ensure the continued safe functioning of decontamination equipment the CP(D) should conduct a series of safety checks before starting the yearly tests. The annual validation and verification of washer-disinfectors is undertaken on behalf of Welsh Government throughout NHS Wales by NWSSP-FS.

2.69 A documented programme of the yearly safety checks necessary for a particular installation should be undertaken with input, if required, from the AE(D). Reference should be made to the manufacturer’s maintenance schedules.

2.70 The original installation checks and tests can be used as a basis for the yearly safety checks paying particular attention to those factors that affect safety and especially to those that might have changed since the previous annual safety check or installation test.

2.71 The adequacy and safe connection of all engineering services should be verified.

Daily tests – User

1. Check spray arm rotation for free movement
2. Check spray nozzles for blockage (paying particular attention to those fitted to carriages for cannulated instruments)
3. Remove and clean strainers and filters, etc.
4. Ensure sufficient additives available and that dosing system is functioning

Weekly tests – User or CP(D)

1. Weekly safety checks
2. Carry out daily tests
3. Water hardness (all process stages)
4. Water conductivity (final rinse stage)
5. Automatic control test
6. Cleaning efficacy test by residual soil detection

Quarterly tests – CP(D)

1. Weekly safety checks
2. Automatic control test
3. Verification of calibration
4. Thermal disinfection test
5. Cleaning efficacy test:
 – reference load
 general instruments
 endoscopic/MAT instruments
 – test soil

Yearly and revalidation tests – CP(D)

1. Yearly safety checks
2. Automatic control test
3. Verification of calibration of washer-disinfector instruments
4. Water system:
 – chemical purity
 – bacterial endotoxins
5. Drainage:
 – free draining
 – efficacy of discharge
6. Doors and door interlocks:
 – Cycle start interlock
 – In-cycle interlock
 – Failed cycle interlock
7. Fault indication on sensor failure
8. Water vapour discharge test
9. Chemical additive dosing tests:
 – reproducibility of volume admitted
 – low level detection
10. Load carriers
11. Air quality
12. Cleaning efficacy test:
 – test soil
 – reference load
 general instruments
 endoscopic/MAT instruments
13. Over temperature cut-out test
14. Thermometric test for thermal disinfection
 – reference load
15. Load dryness test
 – reference load
16. Process residue test

Notes

1 Additional test loads and alternative test soils may be required for washer-disinfectors that are also intended for use with hollowware and/or anaesthetic accessories. The additional testing should also include tests on the load carriers that will be used with these additional loads.

Calibration, limits and function, including fault/alarm, of independent monitoring system should be checked during quarterly and yearly tests.
Test methods

2.72 Test methods, equipment and requirements are detailed in WHTM 01-01 Part B and BS EN ISO 15883 Parts 1 and 2. The following information, where relevant, will apply to those washer-disinfectors not covered by this Standard. For thermal (moist heat) disinfection the disinfection conditions are specified either by an A₀ value to be achieved throughout the load or by a disinfection temperature band, defined by a minimum acceptable temperature, known as the disinfection temperature, and a maximum allowable temperature. Time/temperature bands meeting the requirements of an acceptable A₀ of 600 are as highlighted in paragraph 1.16.

2.73 Other time/temperature relationships may be used as long as achievement of the acceptable A₀ has been validated to be achieved. The choice of A₀ and disinfection temperature will depend upon the:
- intended use of load items;
- materials of which the load items are made;
- nature and extent of expected bioburden on load item.

2.74 The higher the disinfection temperature, the shorter the holding time that should be used to achieve the same level of disinfection.

Drainage

Drain seal integrity

2.75 When it is impractical to vent the washer-disinfector externally a condenser can be used to allow venting into the workspace without discharging hot, humid air. The restricted flow associated with this system can produce a back pressure in the chamber. If the back pressure is excessive the water seal between the chamber and drain might be broken.

2.76 This test is designed to establish that the seal integrity is maintained under normal operating conditions. The test is intended for use both as a type test and, as such, is a requirement of BS EN ISO 15883-1 and as an operational or installation test.

Apparatus

2.77 The following equipment should be used:
- a full load of the type the washer-disinfector is designed to process;
- a test trap, of the same type and dimensions as normally fitted, but manufactured from a transparent material (type test only).

Method for type test

2.78 Fit the transparent trap in place of the normal trap and connect it to a suitable outlet. Pour sufficient water into the chamber to charge the trap to the normal level. Verify that there are no leaks.

2.79 Place a full load in the chamber, close the door and initiate an operating cycle. Without opening the door between cycles run a further four cycles. During each operating cycle observe the trap and establish whether the water seal in the trap has been broken.

Method for operational test

2.80 Carry out the test on the installed washer-disinfector with all services connected. Verify that the trap is charged with water to the normal working level.

2.81 Place a full load in the chamber, close the door and initiate the operating cycle. At the end of the cycle, remove the load and examine the water level in the trap. This may be done either visually or using a dipstick as appropriate. Without any delay, which would allow the chamber or load to cool, reload the machine with the same full load and run a further cycle. Repeat the same procedure until five consecutive cycles have been run. After each operating cycle, observe the trap and establish whether the water seal in the trap has been broken.

Results

2.82 The water seal should not be broken during the test.

Free draining (tanks, chamber, load carriers, pipework)

2.83 Residual water that does not drain from the internal pipework of the washer-disinfector can provide an environment for microbial growth; these microorganisms might then be available to recontaminate the disinfected load.

2.84 The following checks should be carried out during type-testing, works testing and installation testing to verify that as designed, built and installed the washer-disinfector will effectively discharge all the water from the system.

Method

2.85 Test the free draining of chamber and load carriers by visual observation at end of the cycle.

2.86 Test the free draining of tanks by visual observation on draining the tanks.

2.87 Test the pipework flow to discharge point by visual observation including use, when necessary, of a spirit level.
Purging of the trap (type test only): efficacy of discharge through the trap

2.88 The test is intended to verify that the operating cycle is effective in purging the trap of all waste and soil.

2.89 The test can be carried out as part of the cleaning efficacy test during operational testing.

Apparatus

2.90 The following apparatus should be used:

- test soil appropriate to the type of washer-disinfector being tested (see paragraph 2.263, 'Periodic tests');
- sampling tube of sufficient length to reach the water trap in the drain of the washer-disinfector and a sampling pump, for example, a pipette pump or syringe.

Method

2.91 On completion of an operating cycle to test the cleaning efficacy by processing a full load contaminated with an appropriate test soil, place the sampling tube into the water trap and remove a sample for examination.

2.92 Examine the water sample from the trap for residual test soil using the detection method appropriate to the test soil.

Results

2.93 The water in the trap should be free from residual soil at the same level of detection as that specified for the load items. Residual soil in the trap can present an infection or recontamination hazard.

Estimation of dead volume of pipework (type test only):

2.94 Residual water that does not drain from the internal pipework of the washer-disinfector might provide an environment for microbial growth; these microorganisms might then be available to re-contaminate the disinfected load.

2.95 This test is intended primarily as a type test but might also be of value as an operational test or when investigating microbial contamination occurring in a washer-disinfector.

2.96 The test should only be carried out once the checks for free drainage recommended in paragraph 2.83, 'Free draining (tanks, chamber, load carriers, pipework)' have been satisfactorily completed.

Apparatus

2.97 Volumetric measuring vessels of appropriate size should be used.

Method

2.98 Ensure that the pipework of the washer-disinfector is dry, either following disassembly and re-assembly or purging with dry compressed air for not less than 30 min, then flush with a known volume of water, simulating the flow that would occur in normal use.

2.99 Measure the volume of water discharged and the dead volume, estimated as the volume retained, calculated from the difference between the two values.

2.100 When the washer-disinfector has two or more pipework systems that are entirely separate, e.g. for flushing water, wash water, rinse water or chemical disinfectant solution, each system may be tested separately.

Results

2.101 The volume of retained water should be less than 1% of the volume of water used.

Venting system

Load contamination from ductwork

2.102 The evolution of water vapour from the chamber during the washing stage, thermal disinfection stage and drying stage can result in condensation occurring in the ductwork and in the condenser, if fitted. The ducting is commonly arranged to allow this condensate to drain back into the chamber. Should this condensate become contaminated there is a risk that it could contaminate the load. The test is designed to establish that any condensate draining back into the chamber will not contact the load. The test is intended for use both as a type test, and as such is a requirement of BS EN ISO 15883-2, and as an installation or operational test. It may be impractical to carry out this test as specified in an operational environment, in which case the competent engineer may be able to adapt other methods of test to visually inspect load contamination that could be present.

Apparatus

2.103 The following apparatus should be used:

a. vessel of not less than 500 mL capacity having a discharge port at its base connected to a flexible tube fitted with an on/off valve and a flow control valve;

b. stopwatch;

c. load carrier and full load for the washer-disinfector;

d. paper towels.
Method

2.104 Disconnect the external ducting to the washer-disinfector 1 m above the chamber.

Note
If it is not possible to disconnect the ducting at this position it should be disconnected at the chamber and a spare 1 m length of ducting should be connected to the chamber.

2.105 Position the vessel approximately 1 m above the level of the chamber discharge to the vent.

2.106 With the on/off valve closed, fill the vessel with 200 mL ± 20 mL of cold water. Open the valve and adjust the flow control valve so that the contents of the vessel are discharged in 1 min ± 5 sec.

2.107 Refill the vessel with 200 mL ± 20 mL of cold water. Feed the flexible tube into the ducting so that the open end of the flexible tube is 600–800 mm above the top of the chamber.

2.108 Load the chamber with a full load of dry load items in accordance with the manufacturer’s instructions. Close the chamber door and then open the on/off valve. Record the time required for the vessel to empty.

2.109 Within ONE minute of the vessel emptying, open the chamber door and remove the load and any removable load containers. Place all the removed items on absorbent paper and examine all surfaces of the load and the absorbent paper for traces of water.

2.110 Repeat the above procedure for the full range of load carriers that the washer-disinfector is designed to process.

Results

2.111 There should be no visible water on the load or load carriers.

Overflow test

2.112 For washer-disinfectors that incorporate one or more water storage tanks within the washer-disinfector, the capacity of the overflow(s) to discharge all excess water, as intended, without spillage into the washer-disinfector or working area should be verified.

Type/works test method

2.113 Ensure that the washer-disinfector is connected to all necessary services and the water supply pressure adjusted to not less than 6 barg under the conditions of flow that prevail with the supply valve(s) fully open.

2.114 Fully open the supply valve(s).

2.115 Observe the level of water in each tank or cistern until this has been unchanged for not less than 2 min.

Installation test

2.116 The washer-disinfector should be connected to all necessary services.

2.117 Fully open the supply valve(s).

2.118 Observe the level of water in each tank or cistern until this has been unchanged for not less than 2 min.

Results

2.119 The washer-disinfector and installation should be regarded as satisfactory when equilibrium conditions have been attained within the tank(s) without discharge of water other than by the intended (piped) overflow.

Volume of water used per stage

2.120 During type-testing, the manufacturer should be required to determine the volume of water used during each stage of the cycle. These data are used in calculations of the service requirements.

2.121 In addition, during installation or operational testing in event of concerns with washer-disinfector performance, the volume of water used for each stage should be verified. If the volume of water used is insufficient the efficacy of the cleaning and disinfection process might be adversely affected. If the volume is greater than that specified an unexpectedly heavy demand might be placed upon the water supply.

2.122 There are three methods that may be used for determining the volume of water used. The method should be chosen on the basis of which is most convenient for the particular installation.

Apparatus

2.123 A water flow meter (or volumetric measuring equipment) should be used.

Method

2.124 Fit a water flow meter in each of the water supply pipes, consecutively or concurrently, and determine the volume used by comparison of the reading before and after each stage of the process cycle. Operate the washer-disinfector with the chamber empty, apart from the chamber furniture. Follow the water meter manufacturer’s instructions for installation. Pay particular attention to the length of uninterrupted straight pipe required on either side of the meter.
When the washer-disinfector is supplied from a readily accessible tanked supply interrupt the make-up to the tank and mark the water level. Determine the volume of water required to restore the level after an operating cycle stage by the addition of a measured volume of water.

For those washer-disinfectors which discharge all the water from each stage at the end of each stage, obtain a suitable estimate of the volume used by volumetric measurement of the discharge from the drain.

Results

The volume of water used for each stage of the cycle should be within ±5% of the volume specified by the manufacturer.

Doors and door interlocks

Cycle start interlock

The interlock should prevent a cycle being started with the door open.

Method

Leave the doors open and unlocked. Ensure that all services are connected. Make an attempt to initiate an operating cycle.

Close and lock the doors and make a further attempt to initiate an operating cycle.

Results

It should not be possible to initiate a cycle with the door(s) left open. With the door(s) closed it should be possible to initiate an operating cycle.

In-cycle interlock

An interlock is required to ensure that the door(s) cannot be deliberately or inadvertently opened while the washer-disinfector is in operation.

Method

Close and lock the door(s) and start the operating cycle. While the operating cycle is in progress attempt to unlock each of the doors. Where practicable, visually inspect the interlocks to verify engagement before attempting to open the door.

Results

In these circumstances it should not be possible to unlock any of the doors.

Double-door washer-disinfectors

Method

Both during and between cycles, make attempts to open either or both the loading door and unloading door of the double-door washer-disinfector.

Results

It should not be possible to open the unloading door after initiation of a cycle until a cycle has been completed satisfactorily.

It should not be possible for both doors to be opened at the same time.

It should not be possible to open the loading door until a cycle has been satisfactorily completed and the unloading door has been opened and closed.

On sensor failure

Method

Disable each sensor in turn and attempt to open each of the door(s). Where practicable, avoid the undertaking of checks during an operating cycle.

Results

In each case it should not be possible to open the door(s).

Door opening force

The mechanism for opening the washer-disinfector door should not require the use of excessive force. This test need only be carried out during installation qualification by the manufacturer or where deemed necessary in the event of operational concerns.

Apparatus

The following equipment should be used:

- a. spring balance calibrated in kilograms with a range including 0–250 kg and with an accuracy of ±1 kg over the range 0–250 kg;
- b. non-extensible means of attachment of the spring balance to the door mechanism.

Method

Measure the force required to initiate and sustain the movement of the door opening mechanism by interposing a spring balance, aligned co-axially with the direction of movement of the door opening mechanism, between the operator and the mechanism.

Attach the spring balance to the door opening mechanism. Open the door, record the force required to initiate the movement and to sustain the movement.

Results

The indicated value required to initiate or sustain the movement of the door opening mechanism should not exceed 25 kg.
Failed cycle interlock

2.146 The interlock should prevent the Operator from removing a load in the normal manner at the end of a cycle that failed.

Method

2.147 During an operating cycle interrupt one, or more, of the services to the washer-disinfector sufficiently to cause a cycle failure.

Results

2.148 A fault should be indicated. It should not be possible to open the unloading door, if fitted; it should only be possible to open the loading and/or unloading door by means of a special key, code or tool.

Fault indication on sensor failure

2.149 A failure of any sensor used as part of the control system of the washer-disinfector should cause a fault to be indicated by the automatic controller.

Note

This test should only be carried out during routine testing where simplistic and practical disablement of each sensor is possible. If in doubt consult the manufacturer on the most appropriate method of test.

Method

2.150 Disable each sensor providing information to the automatic controller in turn to establish that a fault is indicated.

2.151 Test each sensor as follows. Start an operating cycle. During, or before, the stage of the cycle at which the sensor is intended to provide data used to determine the control of the cycle, disable the sensor.

2.152 Test each sensor in both “open circuit” and “short circuit” failure modes.

Result

2.153 A fault should be indicated during or at the end of the cycle. It should not be possible to open the door on a single-ended washer-disinfector or the unloading door of a double-door washer-disinfector.

Chemical dosing

Reproducibility of volume admitted

2.154 This test is intended to verify the setting for the dispensed volume of chemical additive(s) and to ensure that it is reproducible within defined limits. The test should be carried out for each chemical dosing system on the washer-disinfector.

Apparatus

2.155 Two measuring cylinders that conform to BS EN ISO 4788 should be used. The size of measuring cylinder should be appropriate to the volume of chemical additive to be dispensed.

Note

When compatibility with the chemical additive to be measured has been established, conformity to BS 5404-2 is sufficient.

Method

2.156 Disconnect the supply line to the chamber as close as possible to its discharge point into the chamber or water circulation system in order to discharge into the measuring cylinder.

2.157 Place detergent in the first cylinder to a known mark. Place detergent to a known mark in the second cylinder.

2.158 Actuate a normal cycle and, at the end of the dosing stage, top up the first cylinder to the original mark from the second cylinder. Calculate the detergent added from the second cylinder.

2.159 Repeat the test three more times; record the volume added on each test.

2.160 Care should be taken since many of the concentrates used are irritant or corrosive. Water might not be an acceptable substitute because, for many dosing systems, differences in viscosity can affect the dispensed volume.

Results

2.161 The result of the first test should be ignored.

2.162 The mean collected volume from the final three tests should be within ±10% of the nominal dispensed volume.

Indication of insufficient chemical additives

2.163 The correct volume of chemical additive(s) for the correct functioning of the washer-disinfector should be used. The washer-disinfector should be equipped with means to ensure that a cycle is not initiated when there is insufficient chemical additive remaining in the reservoir to complete a cycle.

2.164 The test should be carried out for each chemical dosing system on the washer-disinfector.

Method

2.165 Place a low level of additives in the dispenser reservoir and run repeated cycles.

2.166 Fill an otherwise empty container with sufficient chemical for more than two but less than four
operational cycles. Run the washer-disinfector on three consecutive cycles. Estimate the volume remaining at the end of each cycle (pre-marked container, dipstick or weight).

Results

2.167 The washer-disinfector should indicate at the beginning of the third or fourth cycle that there is insufficient chemical remaining to complete a cycle.

Water vapour emissions

2.168 Faulty or damaged door seals, or faulty condensers, can give rise to vapour emission into the working area and the leakage of potentially infectious material from the washer-disinfector.

2.169 Excessive and persistent leakage carries the risk of scalding the operator and causing deterioration of walls and their surface finishes.

Apparatus

2.170 The following equipment should be used:

a. absorbent paper wipes (of a type which change colour density when damp);

b. one or more mirrors 50 mm x 50 mm or larger.

Method

2.171 Load the washer-disinfector, close the door and wipe the joints between the door and the door surround to remove any moisture. Carry out an operating cycle.

2.172 Throughout the operating cycle use the mirror(s) to check if water vapour escapes from the door seal or from the condenser, if fitted.

2.173 At the end of the operating cycle, with the door still closed, use the absorbent wipes to wipe the joints between the door and the door surround as close as possible to the door seal. Examine the wipes for dampness.

2.174 A further four operating cycles should be run with the checks described above being carried out on the final cycle.

Results

2.175 There should be no misting of the mirror(s), which would be evidence of vapour emission, and no dampness of the absorbent wipes, which would be evidence of vapour or liquid emission.

Instrumentation fitted to a washer-disinfector

Verification of calibration

2.176 The calibration of instrumentation and any independent monitor fitted to the washer-disinfector should be verified by comparison with calibrated test instruments during steady state conditions, for example, the temperature during the disinfection hold period. Compliance to BS EN ISO 15883-1 clause 5.12–17 should be met. Where adjustments of calibration are carried out against appropriately certificated test equipment, the measured results, known errors and corrections should be clearly identified in a service report, test report or any other formal method of documentation submitted to the responsible management. For further information see WHTM 01-01 Part B - ‘Common elements’.

2.177 This may be carried out concurrently with other testing, for example, during the automatic control test during quarterly periodic testing (see paragraph 2.299, ‘Automatic control test’).

Load carriers

2.178 Load carriers come in a variety of forms including trolleys, carriages and baskets. Their correct functioning is essential to the successful outcome of a washer-disinfector operating cycle. It is important that they cannot easily be misaligned, that they function correctly and that, when applicable, they make good connection with service supply points in the chamber and with load items, when necessary.

Note

It is extremely important to routinely check loading trolleys and carriers for safe and correct operation.
2.180 Check load carriers with rotary spray arms to ensure that the spray arms are free to rotate, both when the load carrier is empty and when fully loaded.

Thermometric tests

2.181 Thermometric tests are carried out to verify the attainment of the specified conditions throughout the chamber and load during the operating cycle. Continuous process washer-disinfectors and multi-chamber washer-disinfeters in which the use of recorders with fixed sensors is impractical should be tested using single channel data loggers that can be processed through the washer-disinfector. Biological indicators should not be used as a substitute for thermometric testing.

Chamber wall temperature

Apparatus

2.182 A temperature recorder, according to the recommendations given in the ‘Decontamination equipment: test equipment and materials’ section of WHTM 01-01 Part B, with not less than 12 sensors should be used.

Method

2.183 Locate thermocouples as follows: one in each corner of the chamber, one in the centre of the two side walls, one in the centre of the roof of the chamber and one adjacent to the temperature sensor used as the reference sensor for chamber temperature.

2.184 Measure the temperature attained throughout four operating cycles, the first of which should be at least 60 min since the machine was last used (a cold start) and the final three with not more than a 15 min interval between cycles (a hot start).

2.185 The washer-disinfector should be operated empty except for chamber furniture, for example, load carriers.

2.186 Multi-chamber washer-disinfectors may be tested with each chamber tested consecutively or concurrently. In the latter case eight sensors should be used for each chamber.

Results

2.187 The results should be as follows.
 a. The temperatures recorded on the surface of the chamber should be within the range 0–5°C of the disinfection temperature throughout the holding period for the disinfection stage;
 b. The temperatures recorded on the surface of the chamber should be within ±2°C of the set temperature for the relevant stage throughout the holding period for each of the other stages;
 c. The temperature indicated/recorded by the washer-disinfector instruments should be within ±2°C of that recorded by the test instrument from the sensor adjacent to the reference sensor throughout the holding period for the disinfection stage;
 d. The temperature profile obtained for the operating cycle should be consistent within ±2°C for the last three test cycles.

Load carrier temperature

Apparatus

2.188 A temperature recorder, according to the recommendations given in the ‘Decontamination equipment: test equipment and materials’ section of WHTM 01-01 Part B. No fewer than four sensors should be used.

2.189 Three independent data loggers and a temperature recorder having at least one sensor may be used as an alternative.

Method

2.190 Locate temperature sensors at two diagonally opposite corners of the load carrier, in the approximate geometric centre of the load carrier and adjacent to the temperature sensor used as the reference sensor for chamber temperature.

2.191 Measure the temperature attained throughout four operating cycles, the first of which should be at least 60 minutes since the machine was last used (a cold start) and the final three with not more than a 15-minute interval between cycles (a hot start). Ensure that the washer-disinfector is empty except for chamber furniture, for example, load carriers.

2.192 Replace the load carrier between cycles with a load carrier at ambient temperature.

2.193 Test each chamber of multi-chamber washer-disinfectors consecutively using independent data loggers to record the temperature of the load carrier. Use a temperature recorder with fixed sensors to record the temperature adjacent to the reference sensor.

2.194 Keep the washer-disinfector in continuous operation, with not more than 15 minutes between cycles, when the length of cycle/the number of dataloggers available precludes re-use of the dataloggers, so that when the second and subsequent tests are initiated not more than 15 minutes has elapsed since the first chamber completed a cycle.

2.195 This test may be run simultaneously with the chamber wall temperature test.
Results

2.196 The results should be as follows.

a. The temperatures recorded on the surface of the load carrier should be within the range 0–5°C of the disinfection temperature throughout the holding period for the disinfection stage;

b. The temperatures recorded on the surface of the load carrier should be within ±5°C of the set temperature for the relevant stage throughout the holding period for each of the other stages;

c. The temperature indicated/recorded by the washer-disinfector instruments should be within ±2°C of that recorded by the test instrument from the sensor adjacent to the reference sensor throughout the holding period for the disinfection stage;

d. The temperature profile obtained for the operating cycle should be consistent within ±2°C for the last three test cycles.

Over-temperature cut-out

2.197 The washer-disinfector is fitted with an over temperature cut-out to ensure that, in the event of the automatic control failing to control the temperature in the washer-disinfector, the temperature will not rise to a level that would damage the load in the washer-disinfector.

Apparatus

2.198 A temperature recorder, according to the recommendations given in the ‘Decontamination equipment: test equipment and materials’ section of WHTM 01-01 Part B. No less than four sensors should be used.

2.199 Three independent data loggers and a temperature recorder having at least one sensor may be used as an alternative.

Method

2.200 Locate temperature sensors at two diagonally opposite corners of the load carrier, in the approximate geometric centre of the load carrier and adjacent to the temperature sensor used as the reference sensor for chamber temperature.

2.201 Operate the washer-disinfector on a normal operating cycle, empty except for the load carrier. For multi-cycle machines test the two cycles that have the highest and lowest operating temperatures.

2.202 During the stage of the cycle when the maximum temperature is attained, disable the temperature control system.

Results

2.203 The over-temperature cut-out should operate at a temperature not more than 5°C higher than the maximum set disinfection temperature configured on the washer-disinfector.

Note

If there are concerns, consult with the manufacturer to confirm whether this test is safe to undertake routinely on a particular design of washer-disinfector. Discuss with NWSSP-FS the appropriate risks before a decision is made to undertake this test operationally on the washer-disinfectors installed.

Load dryness

2.204 If the washer-disinfector includes a drying stage, the drying efficacy should be tested on a test load as follows:

- Within five minutes of the end of a normal cycle initiated from cold, place the load on a sheet of coloured crepe paper;
- Observe any water emanating from the load and carriage, and examine the crepe paper from any residual water from the load staining it;
- Lumen instruments should be examined by blowing dry compressed air through the lumen onto a mirror surface.

Results

2.205 No residual water should be observed from the load or carriage, on the crepe paper or, where relevant, on the mirror surface.

Residual chemical additives

2.206 The nature of the residues and the level of such residues that might be of concern depend on the chemical additives used during the process and the intended use of the washed and disinfected product.

2.207 The chemical additives used during the process, detergents, rinse aids, etc., might not be completely removed by the rinsing process.

2.208 The residual level that should be tolerated depends on the nature of the chemical and the intended use of the product. The supplier of any chemical agent used will normally provide data on the chemical composition of the chemical agent and the biocompatibility of the components of the chemical agent. The supplier will also normally provide details of the method of detection that may be used to determine that processed items are free from residuals at the specified levels.
The sampling method and analytical method should be capable of determining the presence of the chemical additive at concentrations below that specified as potentially harmful, i.e. as the maximum acceptable level.

Method

Test the efficacy of the rinse process by using twice the normal dose of the chemical additive on a normal operating cycle using a test load of the simulated product. Analyse the final rinse water and the simulated product using the method recommended by the manufacturer.

Results

The concentration on the simulated product should be lower than the specified maximum acceptable level.

Note

Washer-disinfector or chemical manufacturers can advise on this test and the expected results and if necessary undertake it as part of supply contract.

Air quality

Many washer-disinfectors are fitted with air filters to remove particulate material from the air supplied to the drying stage. These filters are often HEPA filters, for example, EU 12/1, of the type used to remove bacterial contamination from the air supply. When they are used as general particulate filters, performance tests for the filter or the filter housing are not necessary, except when the intention is to provide air free from bacterial contamination when the load is intended for use without further processing, for example, sterilization.

Microbial sampling is not necessary for either system unless otherwise specified.

Method

The complete installation should be tested, and the procedures followed, using the method specified in BS EN ISO 14644-1. A challenge aerosol of inert particles of the type produced by a dispersed oil particle generator should be introduced into the air upstream of the filter. The downstream face of the filter and its housing should then be scanned for leakage using a photometer.

Results

The reading on the photometer should be steady and repeatable and should not exceed 0.01% of the upstream reading.

Sound pressure test

The British Standard requires the manufacturer to carry out a sound power test as a type test for decontamination equipment. This test measures the total sound power radiated from the machine and should be performed in a specially designed and equipped test room. It is neither necessary nor practicable to repeat the test on an installed machine.

The perceived level of noise in the immediate vicinity of the equipment during operation is, however, of concern. The perceived noise level depends not only upon the sound power level of the equipment but also on the acoustic properties of the environment and other sources of noise. It should necessarily be determined with the washer-disinfector installed and working normally.

A failure of the sound pressure test need not be an indication that the machine is faulty. The problem might lie in the acoustic properties of the room in which the machine is installed.

The sound pressure test should be carried out in accordance with BS EN ISO 3746 by suitably trained and experienced personnel. The guidelines given in the following two paragraphs are intended only for additional guidance and are not the complete test method.

Method

Use the procedure specified in BS EN ISO 3746 for both the loading and unloading area if these are not common, and plantroom if present, to determine the following:

a. the mean A-weighted surface sound pressure level;

b. the peak A-weighted surface sound pressure level.

Results

The test should be considered satisfactory if the following recommendations are followed:

a. the mean A-weighted surface sound pressure level does not exceed:
 (i) 55 dBA for decontamination equipment installed in an operating suite, ward, treatment room or other noise sensitive area;
 (ii) 70 dBA for decontamination equipment installed in a sterile services department, laboratory or pharmacy production area;

b. in both the loading and unloading area the peak A-weighted surface sound pressure does
not exceed the mean A-weighted surface sound pressure level by more than 15 dBA.

Electromagnetic compatibility

2.222 The British Standard for washer-disinfectors specifies that:

- when tested by one of the methods in BS EN 61000-4-3, the functioning of the automatic controller and the instrumentation should be unaffected by electromagnetic interference of severity level 3 as specified in BS EN 61000-4-3;
- when tested in accordance with BS EN 55014-1, any RF interference generated by the washer-disinfector should not exceed the limits specified in BS EN 55014-1.

2.223 The current proposal within the CEN TC102 committee preparing standards for washer-disinfectors is to specify compliance with BS EN 61000-6-3 and BS EN 61000-6-1.

2.224 These tests are applicable as type tests or works tests only.

2.225 Since June 1993, washer-disinfectors classified as medical devices have been required to carry the CE marking. Under the Medical Devices Directive, any washer-disinfector which bears CE marking solely under the Electromagnetic Compatibility Directive should have the CE marking identified as being applied under the EMC Directive.

Cleaning efficacy tests

2.226 Cleaning efficacy tests are used to demonstrate the ability of the washer-disinfector to remove or reduce to acceptable levels, soiling and contamination that occurs during normal use of reusable items.

2.227 Test soils are used to simulate naturally occurring contamination since the latter shows considerable variation and is therefore more difficult to use for standardized testing.

Type tests

2.228 The cleaning efficacy should be determined using the relevant test soil applied to a reference load or simulated product of demonstrated relevance.

2.229 The manufacturer will normally establish worst case conditions of temperature, detergent concentration, water hardness and water pressure/flow rate for use during testing.

2.230 By analysing the fraction of soil removed during the cleaning process, when operated for various time periods shorter than those that will normally be used, a quantitative comparison of cleaning efficacy can be made.

2.231 The recommended minimum operating conditions given by the manufacturer should be based on these data that should be made available to the User.

Operational tests

2.232 During operational tests of cleaning efficacy with test soils the thermal disinfection stage should be disabled.

2.233 During thermal disinfection the action of hot water/steam can also reduce the concentration of residual test soil.

2.234 The drying stage may also be disabled if this is necessary to facilitate the detection of residual soil.

Test soil

2.235 The choice of test soil to be used should be based on the intended use of the washer-disinfector and should be formulated to simulate the soiling which will be encountered in practice and which would be most difficult to remove.

Test loads

2.236 The test load should consist of items of similar size, mass and materials of construction to the range of products the washer-disinfector is intended to process. Care is needed if loads are mixed or lacking in uniformity.

Method for chamber walls and load carriers

2.237 Contaminate the chamber walls and load carrier with the test soil in accordance with the manufacturer’s instructions for the test soil including the specified quantities to be used and any drying stage.

2.238 Run a normal operating cycle.

2.239 After completion of the wash cycle, and before the disinfection stage, except where this is combined with the rinse stage, abort the cycle.

2.240 For operational tests, carry out the test in duplicate for each type of operating cycle available on the washer-disinfector.

2.241 When used as a periodic test, carry out the test only once for each type of operating cycle available.

Method for reference loads

2.242 This test should be run only after satisfactory completion of the test for the efficacy of soil removal from chamber walls and load carriers.

2.243 Contaminate the test load with the test soil in accordance with the manufacturer’s instructions for the test soil.
The specified quantities should be used and any drying stage should be carried out in strict accordance with the instructions.

Run a normal operating cycle for the load type under test.

Abort the cycle after completion of the wash cycle, and before the disinfection stage, except where this is combined with the rinse stage. Remove the test load and examine for the presence of residual soil. Run these tests in duplicate.

On satisfactory completion of this part of the test, run a further three cycles with actual loads, of the type intended to be processed, contaminated with natural soiling in-use.

Run a normal operating cycle for the load type under test.

After completion of the complete operating cycle remove the test load and examine for cleanliness.

Assess the cleanliness of the processed items visually or by such other means as will be routinely used for acceptance testing, see paragraph 2.263, ‘Tests for residual soil’.

The test loads should be free from the test soil to the extent specified for the test soil employed and no test soil should have been transferred to the chamber walls or load carrier.

The cleanliness of the processed items should be acceptable by the means that will be used routinely for acceptance testing as described in paragraph 2.263, ‘Tests for residual soil’.

PQ tests

PQ tests of cleaning efficacy are necessary only when some of the items, or some of the loads, to be processed are more difficult to clean than the reference load.

Method

Repeat the tests described above for reference loads with actual loads to be processed specified by the user as being representative of the items or loads intended to be processed.

Contaminate the test load with the test soil in accordance with the instructions for the test soil.

The specified quantities should be used and any drying stage should be carried out in strict accordance with the instructions.

Run a normal operating cycle for the load type under test.

Abort the cycle after completion of the wash cycle, and before the disinfection stage, except where this is combined with the rinse stage.

Results

The chamber walls and load carrier should be free from the test soil to the extent specified for the test soil employed.

The test load should be free from the test soil to the extent specified for the test soil employed and no test soil should have been transferred to the chamber walls or load carrier.

PQ tests

PQ tests of cleaning efficacy are necessary only when some of the items, or some of the loads, to be processed are more difficult to clean than the reference load.

Method

Repeat the tests described above for reference loads with actual loads to be processed specified by the user as being representative of the items or loads intended to be processed.

Contaminate the test load with the test soil in accordance with the instructions for the test soil.

The specified quantities should be used and any drying stage should be carried out in strict accordance with the instructions.

Run a normal operating cycle for the load type under test.

Abort the cycle after completion of the wash cycle, and before the disinfection stage, except where this is combined with the rinse stage. Remove the test load and examine for the presence of residual soil. Run these tests in duplicate.

On satisfactory completion of this part of the test, run a further three cycles with actual loads, of the type intended to be processed, contaminated with natural soiling in-use.

Run a normal operating cycle for the load type under test.

After completion of the complete operating cycle remove the test load and examine for cleanliness.

Assess the cleanliness of the processed items visually or by such other means as will be routinely used for acceptance testing, see paragraph 2.263, ‘Tests for residual soil’.

The test loads should be free from the test soil to the extent specified for the test soil employed and no test soil should have been transferred to the chamber walls or load carrier.

The cleanliness of the processed items should be acceptable by the means that will be used routinely for acceptance testing as described in paragraph 2.263, ‘Tests for residual soil’.

Periodic tests

Tests for residual soil

Note

The development path for this guidance recognises the current work in the piloting of high sensitivity post-decontamination protein quantification tests. As these become validated and available, this guidance will be amended to incorporate their use.

Apparatus

The following apparatus should be used:

- sterile purified water;
- ninhydrin reagent (0.30 g ninhydrin in 100 mL 70% v/v isopropanol);
- cotton swabs (plastic handles not wooden);
 (Alternatively a small quantity of cotton wool held in the jaws of clean forceps may be used.)
- glass microscope slide 25 mm x 75 mm;
- oven set at 110°C ± 2°C;
- 0.5 g/L arginine solution.

Alternative systems/kits may be commercially available. Use of these should demonstrate resolution and accuracy at a similar level to that of the technique described above.
The swabs used for sampling should not have a wooden handle as the wood can interfere with the reaction giving a false positive.

Ninhydrin method

The ninhydrin method uses the reaction of amino acids, peptides and proteins, with 1,2,3-indantrione monohydrate (Chemical Abstracts Service reference number 485-47-2).

This method detects a broad spectrum of substances that can occur as residuals from body fluids and from microbiological studies and is thus suitable for detecting residuals in many of the applications for which washer-disinfectors are employed. Because only the cotton swab moistened with sterile distilled water comes into contact with the item being tested the item may be used after testing if necessary.

Swab a defined area of the surface to be examined with a sterile cotton swab moistened with sterile water. The swab should be compatible with this procedure as many swabs contain sufficient protein for the result to be a positive result regardless of the condition of the instrument.

Air-dry the swab and then transfer it to the laboratory for examination or if suitable facilities exist on-site, examine on site.

Test the swab for the presence of residual protein by adding a drop of ninhydrin reagent to the swab and heating the swab at 110°C for 30 min. After heating examine the swab for a purple colour.

Instruments with a lumen can be tested by using a pipe-cleaner style cleaning brush instead of the swab.

Each test, or series of tests, should be accompanied by a negative control. Moisten a cotton swab of the same batch with sterile water of the same batch and then immediately test using the ninhydrin reagent. The swab should be compatible with this test procedure.

A positive control can also be carried out to establish the sensitivity of the test method. Prepare a microscope slide by thorough cleaning, test using the method and demonstrate to be negative. Inoculate the surface with four 25 µL drops of a 0.5 g/L arginine solution, air dry and use as a positive control test surface.

Results

A purple discoloration on the swab indicates the presence of amino acid, peptide or protein residues.

There should be no purple discoloration on clean items.

Biuret test method

Commonly used as a test for the presence of proteins and detects the presence of two or more adjacent peptide bonds.

Flush the reagent solution through the channels of instruments with a long narrow lumen to detect residuals within the instrument. After testing the item, clean to remove any residual reagent before it is used.

Orthophthalaldehyde (OPA) method

Orthophthalaldehyde can be used, in the presence of a thiol compound, to detect α and ε terminal amino groups of human blood proteins by formation of a fluorescent compound detectable at 360 nm in picomole quantities.

The method is only applicable where there is a suitably equipped laboratory available. The sensitivity may be greater than that provided by the ninhydrin method.

Visual inspection

High levels of residual soil, process chemical residues and residues from poor quality water can be detected by visual inspection of the items which have been cleaned.

This should be done by unaided normal, or corrected, vision under suitable illumination (not less than 400 lux at the work surface).

Disinfection efficacy tests

Thermometric tests should be used for both thermal disinfection processes and chemical disinfection processes where temperature is a critical parameter. For thermal disinfection processes the time temperature relationships are defined in BS EN ISO 15883 Parts 1 and 2.

Thermal disinfection test

During thermometric tests for thermal disinfection, the washing stages should be disabled or the controlled temperature reduced to ambient (20°C ± 5°C) in order to avoid pre-heating the load. Reducing the wash temperature to 20°C creates the worst-case conditions with which the disinfection stage might be expected to cope and...
ensures that disinfection conditions will be attained in the event of a failure of the washing stage.

2.286 Temperature monitoring of the load should be used to determine the attainment of the required time-temperature conditions.

Thermometric test for disinfection

2.287 This test is suitable for all washer-disinfectors and should be used to establish the adequacy of temperature control during chemical disinfection, as well as for verifying attainment of thermal disinfection conditions.

2.288 The load under test will consist of a reference load or a PQ load of discrete items of the type that the washer-disinfector under test is intended to process, or of surrogate devices used to simulate such load items.

Apparatus

2.289 The following equipment should be used:

a. temperature recorder, see the ‘Decontamination equipment: test equipment and materials’ section in WHTM 01-01 Part B;

b. thermocouples or self-contained data loggers, see the ‘Decontamination equipment: test equipment and materials’ section in WHTM 01-01 Part B.

2.290 For type 1 machines and type 2 machines without physical separation of compartments (conveyor washer-disinfectors) sensors may be passed into the chamber through the thermocouple entry port.

2.291 For type 2 (conveyor washer-disinfectors) the sensors to fixed positions may be passed into the chamber(s) through the thermocouple entry port; the sensors on the load might have to be fed in from one end and, when the load exits at the other end, detached and withdrawn from the back through the washer-disinfector. Care should be taken to ensure that there is sufficient length of cable for this to happen.

2.292 When this is not possible the method used for type 2 (multiple cabinet) washer-disinfectors should be adopted.

2.293 For type 2 (multiple cabinet) washer-disinfectors the sensors to fixed positions may be passed into the chambers through the thermocouple entry port; the sensors on the load should be provided from self-contained data loggers within the load.

Method

2.294 Place temperature sensors in the following positions:

- at least one on an item at each level in the load carrier (up to a maximum of three if the load carrier accommodates load items on more than one level);
- one on an item in the region known to be slowest to attain the disinfection temperature*;
- one on an item in the region known to be fastest to attain the disinfection temperature*;
- one adjacent to the automatic control temperature sensor;
- one adjacent to the process recorder sensor, if fitted, in each chamber or compartment;
- three on the load carrier as follows: two at two diagonally opposite corners and one in the approximate geometric centre.

* These positions should be specified by the manufacturer and supported by data from type tests. If these data are not available from the manufacturer preliminary tests to map the temperature throughout the load will be necessary.

2.295 The sensors should be in good thermal contact with the item or installed sensor that they are monitoring and placed, if possible, in or on the part of the item that will be slowest to heat up.

2.296 The test should be performed in triplicate for PQ and commissioning tests but once for periodic testing.

Results

2.297 The test should be considered satisfactory if the following recommendations are followed:

a. the recommendations of the automatic control test are followed;

b. the holding time, as determined from the measured temperatures on the surface of the load items, is not less than that recommended to give an A_0 of 600 as defined in BS EN ISO 15883-1;

c. during the holding time the measured temperatures are within the disinfection temperature band recommended for the operating cycle;

d. the indicated and recorded chamber temperatures are within $2{^\circ}C$ of the temperature measured at the automatic control sensor;

e. the temperature measured on the surface of each load item does not fluctuate by more than $\pm2{^\circ}C$ and does not differ from that in other load items by more than $4{^\circ}C$;
f. at the end of the cycle: the temperature sensors have remained in position.

2.298 If having completed the commissioning tests based on a reference load the washer-disinfector fails to follow the above recommendations for the specific PQ load then it is possible that the washer-disinfector is not capable of processing loads of the type intended. Advice should be sought from the NWSSP-FS.

Automatic control test

2.299 The automatic control test is designed to show that the operating cycle functions correctly as shown by the values of the cycle variables indicated and recorded by the instruments fitted to the decontamination equipment.

2.300 It should be carried out once a week on most machines and is the main test for ensuring that the equipment continues to function correctly.

2.301 During the commissioning, yearly and quarterly test programmes the temperature (and for sterilizers, pressure) sensors for subsequent thermometric tests will be connected to the chamber during this test. If a sensor is placed adjacent to each of the sensors connected to the installed temperature measuring instruments the calibration of these instruments can be checked during periods of stable temperature in the automatic control test.

Method

2.302 Place the test load appropriate to the type of washer-disinfector, contained within any load furniture normally used, in the chamber.

2.303 For washer-disinfectors equipped with multiple cycle capability select the operating cycle to be tested. Start the cycle.

2.304 Ensure that an individual process record is made by the recording instrument fitted to the machine. If the machine does not have a recorder, observe and note the elapsed time indicated chamber temperatures and pressures at all significant points of the operating cycle, for example the beginning and ending of each stage or sub-stage, and the maximum values during the holding time.

2.305 Each stage should be independently timed and the indicated and recorded temperature during these stages logged.

Results

2.306 The test should be considered satisfactory if the following recommendations are followed:

a. a visual display indicates “cycle complete”; b. during the whole of the operational cycle the values of the cycle variables, as indicated by the instruments on the washer-disinfector and any independent monitor or shown on the batch process record, are within the limits established as giving satisfactory results either by the manufacturer or during performance qualification;

c. during the disinfection hold period determined from the indicated and/or recorded chamber temperature:

(i) the indicated, recorded and any independent monitor chamber temperatures are within the disinfection temperature requirement defined in BS EN ISO 15883 Parts 1 and 2;

(ii) the time for which the disinfection temperature is maintained is not less than that previously established, by either the manufacturer or performance qualification tests, as necessary to ensure that the load is maintained at temperatures within the disinfection temperature requirement defined in BS EN ISO 15883 Parts 1 and 2;

d. the door cannot be opened until the cycle is complete;

e. the person conducting the test does not observe any mechanical or other anomaly.

2.307 Where an independent monitoring system is used which has the necessary data-processing capability, process variability may be monitored automatically through presentation of suitable control charts displaying critical process data. Under these conditions, the need for automatic control tests may be restricted to quarterly, annual and revalidation testing.

Validation and periodic tests for ultrasonic cleaners

Introduction

2.308 Ultrasonic cleaners are of the stand-alone ultrasonic bath type or included as a separate dedicated chamber in a multi-chamber machine. Many ultrasonic cleaners do not incorporate a disinfection stage and are intended for use as an initial cleaning process before cleaning and disinfection in a washer-disinfector for surgical instruments.

2.309 Some ultrasonic cleaners are equipped with means to irrigate hollow instruments such as endoscopes. These washer-disinfectors should be tested both
with the general reference load and the endoscope/MAT reference loads. A testing protocol is shown in Table 4.

Test for ultrasonic activity

2.310 The activity of an ultrasonic cleaner can be investigated by the erosion pattern that is created on aluminium foil exposed in the bath for a short period. The activity is not uniform throughout the ultrasonic bath. Tests carried out during commissioning are intended to establish the variation in activity at different positions and levels within the bath and the time required to obtain a characteristic erosion pattern.

2.311 The exposure time should depend on the thickness of the foil, the hardness of the foil, the operating frequency, the watt density and the temperature of the ultrasonic bath.

<table>
<thead>
<tr>
<th>Test</th>
<th>IQ</th>
<th>OQ</th>
<th>PQ</th>
<th>Periodic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic control test</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>W Q Y</td>
</tr>
<tr>
<td>Chamber wall temperature</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Chemical additive(s): low level detection</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical additive(s): process residue</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical: reproducibility</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Cleaning efficacy by residual soil</td>
<td>X</td>
<td>X</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Cleaning efficacy with test soil</td>
<td>X</td>
<td>X</td>
<td>Q Y</td>
<td></td>
</tr>
<tr>
<td>Doors: in-cycle interlock</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Doors: cycle start interlock</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Doors: door-opening force</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Drainage: free drainage</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Fault interlock</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Load carrier temperature test</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load carriers</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Load dryness test</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Over-temperature cut out test</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Remove and clean strainers or filters</td>
<td>X</td>
<td>X</td>
<td>D W</td>
<td></td>
</tr>
<tr>
<td>Weekly safety checks</td>
<td>X</td>
<td>X</td>
<td>W Q</td>
<td></td>
</tr>
<tr>
<td>Sound pressure test</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Test for ultrasonic activity</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Thermometric test for disinfection</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Verification of calibration</td>
<td>X</td>
<td>X</td>
<td>W Q</td>
<td></td>
</tr>
<tr>
<td>Water: hardness</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water: overflow test</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Water supply temperature</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of water used per stage</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

IQ = installation qualification
OQ = operational qualification
PQ = performance qualification
W = weekly
Q = quarterly
Y = yearly

Table 4 Schedule of testing for ultrasonic cleaners
Apparatus

2.312 The following apparatus should be used:

a. aluminium foil, nominal thickness 0.015–0.025 mm;

b. autoclave indicator tape;

c. stopwatch, graduated in 0.2 s and with an accuracy over a period of 15 min of ± 0.5 s, or better;

d. ruler/tape measure graduated in mm.

Method

2.313 Measure the depth of the bath from the level of the lid to the bottom of the bath. Let the depth be D mm. Cut strips of aluminium foil, 15–20 mm wide and (D + 120) mm. Carry out the manufacturer’s recommended start-up procedure.

Note

This will normally include a period of operation to eliminate dissolved gases from the solution in the bath (the de-gassing procedure).

2.314 Ensure that the water in the tank is at the required level, that the required amount of any chemical additive specified by the manufacturer has been added and that the water in the tank is at the specified operating temperature.

2.315 Using strips of autoclave indicator tape across the top of the bath suspend nine strips of the prepared foil in the bath in a 3 x 3 grid.

2.316 The rolled end of each foil strip acts as a sinker weight to maintain the foil in an approximately vertical position. The sinker weight should be not more than 10 mm above, but not touching, the bottom of the bath.

2.317 Operate the bath for the predetermined exposure time. This can vary typically between 30 s for a watt density of 20 W dm$^{-3}$ and 10 min for a watt density of 5 W dm$^{-3}$.

2.318 Remove the strips from the bath, blot dry and examine.

2.319 File the strips by sticking them to an A4 sheet of plain paper using a transparent adhesive tape or by lamination in a clear pocket.

2.320 Drain the bath and clean to remove debris of eroded aluminium foil.

Results

2.321 The zones of maximum erosion should be at similar positions on all nine foils and each should be eroded to a similar extent, by visual inspection. For precise evaluation the foils should be weighed before and after exposure to ultrasonication and the loss in weight recorded. The variation in loss of weight should be such that the weight of any one foil is within ±20% of the mean loss of weight.

2.322 On re-testing, the extent of erosion and the erosion pattern should have remained consistent with those originally determined during commissioning.

Reference test loads

2.323 The test load can contain the following general equipment:

a. 3 cuscoe speculae;

b. 3 artery forceps (Crile, Kelly or Spencer Wells) with box joints;

c. 3 No. 3 Scalpel handles;

d. 3 Yankauers or Pooles suction tubes;

e. sufficient additional instruments to make up a full load.

2.324 The test load can contain the following endoscope/MAT instruments:

a. 2 Trochar and Cannulae;

b. 2 MAT forceps;

c. 2 surrogate endoscopes (see next paragraph);

d. sufficient additional instruments to make up a full load.

Note

On behalf of the All Wales Decontamination Group, SMTL has undertaken research across SSDs in Wales on difficult to clean devices based upon local variables. Such information could be used to identify loads that are known to present the greatest challenge during periodic cleaning efficacy tests.

2.325 The surrogate endoscope should be constructed from 6 mm OD/4 mm ID stainless steel tubing. The overall length should be 450 mm. At the midpoint of the tube should be a 50 mm length of tubing connected to the tubing on either side with compression fittings.

2.326 The 50 mm demountable length can be used to provide a more readily visible section for determination of cleaning efficacy.

PQ tests

Load items

2.327 Difficult to clean laboratory items, other than those of the type included in the reference load, or other items, for example, hollowware, for which...
standard reference loads have been defined, should be reviewed to determine how well they are represented by the items of which the reference loads are composed. If the reference loads do not adequately represent the loads to be used further tests should be carried out using loads composed of items which will be in normal production loads.

Nature of soiling

2.328 Ultrasonic cleaners are often used for items that are contaminated with soiling which is difficult to remove by other cleaning processes.

2.329 The test soil for operational testing should be chosen to represent biological fluids that might be present. If other types of soiling will be encountered, for example, orthopaedic bone cement, tests should be conducted using items soiled in the manner that occurs for normal production loads.
Chapter 3 Water supply

Introduction

3.1 All the organisations responsible for water supply have the statutory power to make and enforce bylaws to prevent waste, excessive consumption, misuse or contamination of the water supply. Washer-disinfectors should be designed, constructed, installed, operated and maintained in accordance with the requirements of the relevant by-laws.

3.2 The number, nature and quality of water supplies required are dependent on the size and type of washer-disinfector and method of decontamination.

3.3 Washer-disinfectors can be supplied with both hot and cold water. When hot water is required as part of the operating cycle, it can be advantageous to supply hot water to the washer-disinfector rather than heat cold water for certain phases of the cycle at the required temperature within the washer-disinfector. Many designs of washer-disinfectors now incorporate holding tanks that pre-heat the water supply for the relevant phase of cycle.

3.4 The quality of water used at all stages in the decontamination process is critical to the successful outcome of the process.

3.5 At each stage the water quality should be compatible with:
 • the materials of construction of the washer-disinfector;
 • the load items to be processed;
 • the chemical additive used;
 • the process requirements of that particular stage.

3.6 The key factors to be considered are:
 • hardness;
 • temperature;
 • ionic contaminants, for example, heavy metals, halides, phosphates and silicates;
 • microbial population;
 • bacterial endotoxins.

Water hardness

3.7 Hard water is caused by the presence of dissolved salts of the alkaline earth metals (calcium, magnesium and strontium), which come out of solution and deposit as hard mineral layers (limescale) when water is heated or evaporated.

3.8 The fouling of electrical heating elements or heat exchange components by hard water dramatically reduces the heat-transfer efficiency and can quickly lead to an increase in heating costs of 50–100%.

3.9 The deposition of limescale within the chamber, piped supplies and around the edges of spray nozzles can seriously impair the performance of a washer-disinfector. Hard water will cause scaling on the edges of spray nozzles even when fed with only cold water.

An example of lime scale build up within a washer disinfecter

3.10 The presence of hardness in water seriously impairs the efficiency of most detergents and disinfectants. If the use of hard water is unavoidable process chemicals containing sequestering agents should be used. This adds considerably to the cost of the process.

3.11 Using hard water in the thermal disinfection and final rinse stages of the washer-disinfector cycle is one of the major causes of white powdery deposits.
on load items. These are not only unsightly and an unwelcome contaminant but act as a focus for soiling and recontamination of the item in use. In some applications, for example, with optical systems, such deposits can seriously impair the utility of the item.

3.12 For the cleaning – that is, flushing and washing – stages most washer-disinfectors will operate with water hardness values up to 125 mg/L CaCO₃ but are more effective and cheaper to operate when the hardness of the water is consistent and has a mean value of 50 mg/L CaCO₃. Accepted limits can be assessed upon local conditions, devices to be reprocessed, design of washer-disinfectors and properties of process chemicals used. NWSSP-FS can provide advice and guidance where required.

3.13 Some washer-disinfectors are fitted with integral water treatment systems; however, such systems are known to promote microbial growth if not used effectively and maintained to the correct levels.

3.14 The temperature at which water is supplied to each stage of the process has a major effect on the efficacy of the process:

- Water at too high a temperature during the flushing, i.e. the initial cleaning stage, can lead to the coagulation of proteins and thus serve to “fix” proteinaceous soil to the surface of the load items. It is recommended that the initial temperature should not exceed 45°C. Traditionally the flushing stage has been supplied with water from a cold supply and, providing there is sufficient mechanical action, this has proved an effective first stage of the cycle;

- Water at too low a temperature during the washing stage, i.e. heated cleaning stage, of the cycle will often impair the ability of detergents used to remove soils composed largely of fats, oils or grease. The manufacturer of the chemicals should state optimum conditions for most effective detergent action of solution. This should be verified as part of validation procedure.

3.15 When enzymatic cleaners are used the water temperature should be maintained close to the optimum temperature specified by the manufacturer; too high a temperature will inactivate the enzymes.

3.16 When chemical disinfectants are used, the rate of activity generally increases with increased temperature. Too low a temperature will cause failure to attain the required microbial activation. However, too high a temperature with particular compounds can lead to degradation of the active components, evolution of toxic vapours or adverse reactions with the load items being processed.

3.17 The maximum temperature of rinsing water should be compatible with the items being processed; many items used in medical practice are temperature sensitive or might be damaged by thermal shock.

Ionic contaminants

3.18 To avoid the risk of corrosion, water used in the cleaning of stainless steel instruments should have a chloride concentration less than 120 mg/L and, for final rinse/disinfection, less than 50 mg/L Cl⁻. Chloride concentrations greater than 240 mg/L Cl⁻ cause pitting to occur. Irrespective of known limits, it is important to visually inspect devices prior to packaging and terminal sterilization to ensure they are fit for purpose and further re-use.

3.19 Tarnishing of stainless steel instruments, shown by blue, brown or iridescent surface coloration, occurs when heavy metal ions, such as iron, are present in the process water. In hot water, over 75°C, magnesium ions and silicates can cause similar discoloration.

Microbial population

3.20 The purpose of the cleaning and disinfection process is to remove soiling and reduce the microbial contamination to an acceptable level for the intended use of the items to be processed. The water used at each stage of the washer-disinfector process cycle should not increase the bioburden of the load items.

3.21 For terminal disinfection, where items are intended to be used without further decontamination processing, the nature and extent of the microbial population in the final rinse or disinfection water should not present a potential hazard to the patient, either through infection or by leading to an erroneous diagnosis. Appropriate treatment to control or reduce the microbial contamination in water might be required.

Concentration of bacterial endotoxins

3.22 Bacterial endotoxins (see paragraph 3.141) are thermostable compounds derived from the cell walls of bacteria which, when introduced into the human body, can cause a fever-like reaction and other adverse effects. They are not readily inactivated at the temperatures used for disinfection or sterilization.
3.23 Traditional guidance states that water used for the final stages of processing in a washer-disinfector, where there is a significant risk of residual water remaining on the load items should not contain more than 0.25 EU mL⁻¹ when the washer-disinfector is being used to process surgically invasive items or those which are intended to come into contact with parenteral solutions. However, measurement of endotoxin levels on instruments addresses concerns that users have with regards to patient safety rather than endotoxin levels in rinse water, which have been shown to be unrelated. Therefore the recommendation is that endotoxin levels per device should not exceed 20EU/ml, rather than identified levels in the supply. Further information can be found in the ‘Water quality requirements for surgical instrument testing’ series of documents on the SMTL website.

Water treatment

3.24 Despite the cost involved in treating water from the public supply, treatment systems can be cost-effective and may have benefits in certain circumstances. The use of an individual type of water treatment system should only be considered where it is deemed there is an actual need, e.g. where inconsistent variables from the local water supply are identified. A decision should be made at local level based upon clinical concerns and historic knowledge of public supply in the region.

Note
NHS Wales, through the All Wales Decontamination Group has taken the view that water of potable quality is the base standard for final rinse supply used in the decontamination of medical devices. In general, direct mains feed is the most consistent method of supplying water of potable quality.

The installation of any treatment systems should be based on localised knowledge where technical issues present a clear benefit for the capital and revenue costs of installing such equipment. Any such systems installed should be maintained in accordance with manufacturers’ specification.

Chemical purity

3.25 There are generally three methods of water treatment available for use on water supplies to be used in washer-disinfectors:

- water softeners;
- water deionisers;
- reverse osmosis (RO).

Water softeners

3.26 Water softeners, or “base-exchange” softeners, consist of an ion-exchange column containing a strong cation resin in the sodium form. Calcium and magnesium ions in the water are replaced by sodium ions. The column may be regenerated by treatment with a solution of common salt (sodium chloride). If not installed, configured, maintained or tested according to the manufacturers’ specification, base-exchange softeners can cause a significant increase in the microbial content of the water.

3.27 The concentration of total dissolved solids in the water is not reduced by this process. The sodium salts that remain do not readily form hard deposits to foul heat exchangers or spray nozzles but if used as the final rinse or disinfection will leave white deposits on the load items as they dry.

3.28 The process is simple to operate with an automated in-line system, will handle water with varying levels of hardness, and is simple and safe to regenerate. After regeneration, however, high levels of chloride ions might be present in the initial output from the softener, which should be run to waste.

3.29 In common with other water treatment systems, the base-exchange softener should run to a minimum volume of out-flow if the required water quality is to be achieved. This volume should be specified by the manufacturer of the treatment plant. The output from the softener should be to a water tank and the volume demanded each time additional water is fed to the tank should exceed the minimum flow.

Integral water softener

3.30 Some washer-disinfectors are available with built in-base-exchange water softeners although these are generally laboratory washer-disinfectors.

3.31 Water softeners should be chosen based on the total demand of softened water in the unit, e.g. SSD, including when necessary provision for manual washing facilities and other plant.

Deionisers

3.32 Deionisation or demineralisation systems can remove virtually all the dissolved ionic material by ion-exchange using a combination of cation and anion exchange resins either in a single column (mixed bed) or in a separate column.

3.33 Operating costs of mixed bed deionisers are usually higher than for two-stage systems.

3.34 Routine maintenance (regeneration) of deionisation and demineralisation systems requires
the use of a strong acid (hydrochloric acid) and a strong alkali (sodium hydroxide). For most types of installation, an exchange column service is available from the water treatment suppliers. The maintenance of these systems in line with manufacturers’ requirements is essential to safeguard output quality.

3.35 Deionised water may become contaminated with microorganisms and the resin column colonised. Deionised water should not be used for the final rinse of products intended for invasive use without further decontamination processing by heating, filtration, etc. It is essential that your risk assessment in this area and related local policy establish safe water supply appropriate for each stage of the process.

3.36 Systems are available in a range of sizes from small wall-mounted units in which ion exchange resins are contained in disposable cartridges to large industrial units. Regeneration requires the use of strong acid (hydrochloric acid) and strong alkali (sodium hydroxide). For most types of installation an exchange column service is available from the water treatment suppliers.

3.37 For a given output volume, the initial cost of providing deionisation equipment will be lower than for reverse osmosis (RO). However, the inconvenience and cost of the regeneration process for deionisers, and the better microbial quality of the RO process, makes RO the preferred option.

Reverse osmosis (RO)

3.38 RO treatment plants remove almost all dissolved inorganic contaminants by passing the water, under pressure, through a semi-permeable membrane against an osmotic gradient. The process will also remove a high proportion of organic material, bacterial endotoxins and microorganisms. Some RO units are fitted with a final 0.2 μm filter to control bacterial numbers.

3.39 The initial capital cost of an RO plant is generally higher than for a deionisation system supplying a similar volume of water, but operational costs are lower. The water has a low microbial population. Measures are required to maintain the microbial quality of water during storage and distribution. The retention of this water quality requires a high level of understanding, maintenance and testing.

3.40 The wastewater produced by properly RO plant may be designated as grey and reused appropriately.

3.41 Issues to be considered if a decision is made on installing RO systems include:

- An RO system removes bacteria, endotoxins and approximately 95% of chemical contaminants;
- The system and associated pipework need to be sanitised regularly;
- The system provides processed water over a long period with minimal maintenance;
- Routine maintenance and membrane replacement are very important;
- The system usually requires a carbon filter to be fitted ahead of the RO unit to remove traces of chlorine from the water supply;
- RO units use large volumes of water, much going to waste, which can be used as grey water;
- Selecting an RO system will depend on the geographical area of the water source and its quality;
- If the supply water is hard, a softening system will be required ahead of the RO unit;
- Adequate space and provision for a plant room to house the equipment.

3.42 Water storage is required, as RO units supply moderate volumes of water over a long period. Washer-disinfectors need large volumes of water quickly during various stages of the cycle.

Microbial purity

3.43 Potable water from the public supply has a low microbial content and should be free from pathogenic organisms, other than those that might cause opportunistic infections in immunologically compromised patients.

3.44 If stored in tanks or cisterns, the microbial content can increase considerably.

3.45 Attention is drawn to the requirement under the code of practice for control of legionella that water in intercepting tanks should be stored below 20ºC or above 55ºC.

3.46 The extent and nature of microbial contamination in the water supplied to a washer-disinfector will depend on the stage in the process cycle at which it is to be used and the intended use of the decontaminated load at the end of the process.

3.47 Water stored at 60ºC or above may be assumed not to have a proliferating microbial population.

3.48 When water is treated by filtration, for example, through a 0.22 mm filter to remove microbial contaminants, rigorous controls are needed to ensure that the system works effectively. These should include:

- either maintaining the pressure drop across the filter throughout its working life, a decrease in
differential pressure being cause for rejection of the process cycle and a change of filter, or, a bubble point test before and after each process cycle, see BS 1752, ISO 4793;
• a continuous recirculation system so that the filter is not left wet in static water;
• treatment of the circulating water to ensure that proliferation of microbial contamination is inhibited either by use of elevated temperature (for example >60°C) or by the use of UV irradiation (wavelength 260 nm ± 10 nm; >2 J m⁻²).

3.49 Verification of purification by filtration should be made by relevant TVC (total viable count) tests.

Pipework

3.50 The pipework used to supply the grades of water should be appropriate to the quality of water carried and be manufactured from material known to minimise the growth of bacteria, e.g. copper. The use of flexible hoses should be avoided where practically possible; however, the difficulty in access may result in it being necessary to employ hoses for final connection. In such cases, the hoses used should comply with the requirements of application and be manufactured in alignment with recognised standards, e.g. Water Regulations Advisory Scheme.

3.51 All pipework should be run with a continuous fall to the discharge point so that it is free draining. It should be free from dead ends and other areas where water can become stagnant.

Water supply by-laws

3.52 All the organisations responsible for water supply within the UK have the statutory power to make, and the duty to enforce, by-laws for the prevention of waste, undue consumption, misuse or contamination of the water supplied by them, see the Water Supply (Water Fittings) Regulations 1999.

3.53 By-laws 38 to 41 require storage cisterns to be fitted with warning pipes (and an overflow if in excess of 1000 L capacity).

3.54 The warning pipe and overflow should not comprise, or have connected to it, a flexible hose.

3.55 By-law 25 Schedule A gives examples of points of use or delivery of water where backflow is, or is likely to be, harmful to health due to a substance continuously or frequently present (By-law 25 (1) (a)).

3.56 This schedule also lists water softening treatment plant, bedpan washers, bottle washers, dishwashers and disinfection equipment and clearly applies to all washer-disinfectors.

3.57 The required protection is a Type A air gap at the point of use or an interposed cistern.

3.58 Water softeners, regenerated only by means of sodium chloride solutions, need only be protected by a Type B air gap.

Water system tests

3.59 A continuous supply of water of the specified chemical and microbial quality is essential to the correct functioning of all washer-disinfectors.

3.60 Water that is too hard or has too high a concentration of dissolved solids can impair the activity of detergents, or require the use of increased quantities of chemical additives, and cause deposits, scaling or corrosion of the washer/disinfector and items being processed.

3.61 Water containing high numbers of microorganisms may recontaminate disinfected items. For all these tests the water should be sampled from a water source either within the chamber or as close as practically possible to the point of entry to the washer-disinfector. Samples may need to be taken from additional points in the supply when trying to identify the cause of a non-conformity.

Water samples

3.62 The sampling procedure should be suitable for all the physical, chemical, and biological determinands of interest. It may be used for water samples throughout the water distribution system.

3.63 The sampling containers used should be specific for the determinands of interest. This should include, as appropriate:

a. 250 mL sterile pyrogen-free single-use containers (for determination of bacterial endotoxin levels and/or total viable count);

b. 1 L acid-washed borosilicate bottles (for determination of cations);

c. 1 L polypropylene bottles (for determination of anions, total dissolved solids);

d. 100 mL high-density polyethylene bottles (for determination of pH, conductivity).

3.64 The first 50 mL of sample taken at each sampling point should be run to waste.

3.65 All samples should be taken in duplicate.

3.66 Samples should be stored at 2–5°C and tested within 4 h of collection.
Water quality tests

3.67 The following clauses recommend analytical methods to determine the various biological, physical and chemical properties of water samples for the various qualities of feedwater to the washer-disinfector. A list of acceptable results for the analysis is provided in Table 5. It should be noted that these levels are a guide and further testing to include additional variables maybe required where problems are identified, either through visual inspection or analytical testing.

3.68 The methods of analysis recommended to detect chemical contaminants at low concentrations with a high level of accuracy require the use of a laboratory with appropriate expertise, facilities and experience.

3.69 Other tests can be carried out on-site or with very simple laboratory facilities; these lack the precision and sensitivity of the laboratory tests but are sufficient for most purposes.

3.70 The following clauses contain detailed procedures for tests that may be carried out on-site or with very simple laboratory equipment at, or shortly after, the time of sampling.

3.71 The precision, accuracy, sensitivity and limits of detection of these methods are usually inferior to those of laboratory methods. They are useful, however, in that they provide evidence of any gross failure and the results are available straightaway making them of diagnostic value during a fault-finding exercise.

3.72 They are generally economical compared with more sophisticated laboratory analysis and can be carried out by non-specialist personnel after thorough, but limited, training. The results should not, however, be used as evidence in cases of dispute.

3.73 For any given determinand there will usually be several methods that are suitable and cover the range of concentrations of interest. The methods recommended here are intended to be representative of those that might be suitable. They are chosen as examples of tests which can conveniently be carried out on site.

3.74 A number of test systems are available commercially. Before adopting one of these methods care should be taken to ensure that the test(s) provides results of sufficient accuracy and sensitivity.

3.75 It is not necessary to use experienced chemical analysts to undertake the on-site analysis of water samples described. It is, however, essential that personnel receive appropriate training before

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Guidance on recommended values</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.5 to 8</td>
<td>Same</td>
</tr>
<tr>
<td>Conductivity uS/cm</td>
<td>300</td>
<td>Conductivity is a simple test that can be carried out regularly and can be helpful in identifying unusual trends. Unexpected results indicate that other parameters should be investigated.</td>
</tr>
<tr>
<td>Hardness CaCO3(mg/L)</td>
<td><210</td>
<td>To be assessed locally both through test results and visual assessment of washer-disinfector chamber/devices reprocessed.</td>
</tr>
<tr>
<td>Chloride mg/L</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>TVC cfu/100 ml</td>
<td>5000</td>
<td>Level determined as a result of terminal sterilization process undergone by these instruments reprocessed within the washer-disinfector’s.</td>
</tr>
<tr>
<td>Endotoxin Units EU/device</td>
<td><20 EU</td>
<td>Limit based upon risk to patient safety of endotoxins on device rather than in rinse water.</td>
</tr>
</tbody>
</table>

Table 5 Requirements for water quality: final rinse and process water
(See Appendix 1 for additional tests that may be necessary in certain circumstances)
3.76 Many contaminants can be detected by two or more of the determinations normally carried out for laboratory analysis. For example, an increase in one or other of the ionic species present will cause an increase in electrical conductivity and an increase in the evaporative residue as well as showing an increase in the concentration of that particular ion.

3.77 Further guidance on appropriate test methods may be obtained from BS 1427.

3.78 Tests suitable for use on-site fall into three main categories:

a. instrumental tests using portable instruments designed for on-site use, for example, portable pH meters, ion selective electrodes;

b. spectrophotometric tests based on measurement of the absorbance of a coloured reaction product; measurement can be visual or photometric and can be against a precalibrated coloured disc or against standard reference solutions;

c. titrimetric tests may be carried out using standard laboratory equipment or with commercially available apparatus designed for field use; the latter is usually much simpler to use.

3.79 For all the instrumental methods recommended there is commercially available equipment specifically intended for field use. All the variables for which instrumental methods are recommended are temperature dependent. The equipment used should be temperature compensated. Also the equipment should be allowed sufficient time on site, before it is put into use, to equilibrate to the local ambient temperature.

3.80 Commercially available test kits based on visual or photometric comparison with coloured discs have become an accepted standard for on-site analysis. Manufacturers usually supply a complete test system, including kits of reagents. To ensure compatibility and maintenance of the manufacturer’s claimed sensitivity and accuracy for the method, the kit specified by the manufacturer should not be substituted.

3.81 The water supplied to the various stages of the washer-disinfector operating cycle should be at an appropriate temperature. If the temperature of the water supplied to the flushing stage is too high (>45°C) there is a risk of coagulating proteinaceous soiling, which inhibits the cleaning process. If the temperature of water supplied to the washing, rinsing and disinfection stages is too low, the washer-disinfector cycle can be greatly extended, with a significant reduction in throughput, while the water is heated to the required temperature within the washer-disinfector. Water supplied in the temperature range 25–40°C presents a serious risk of microbial contamination of the system.

3.82 An indicating or recording thermometer should be used.

3.83 Measure the temperature of the water supply from a sampling point as close to the washer-disinfector as possible. Place the temperature sensor in the middle of the flowing stream as close as practicable to the sampling point. Allow the water to flow for at least a minute before the temperature is read.

3.84 When it is not convenient, or practicable, to run the water to waste from a sampling point close to the washer-disinfector the water temperature can be estimated by measurement of the temperature of the outer surface of the supply pipe. For this method the correlation between the temperature of the water flowing out of the pipe and the surface temperature of the pipe at a particular point should be established during installation testing.

3.85 Measure the surface temperature using a sensor designed for the purpose and follow the manufacturer’s instructions for ensuring good thermal contact with the surface. Record or note the temperature during a normal operating cycle not less than 30 s after the start of water flow through the pipe to the washer-disinfector.

3.86 The noted value should be within the temperature range specified for the installation.

3.87 If the pressure of the water supply to the washer-disinfector is below the minimum pressure specified by the manufacturer, the performance and productivity of the washer-disinfector will be affected adversely.

3.88 If the pressure of the water supply to the washer-disinfector is above the maximum pressure
specified by the manufacturer the capacity of overflow devices may be inadequate, the designed performance characteristics of valves, etc., may be exceeded and in extreme cases there may be the risk of damage to components of the washer-disinfector or to products being processed.

3.89 The test should be carried out as an installation and/or operational test. The test should be repeated when any change is made to the water services supplying the washer-disinfector, including the connection or removal of additional machines.

Note
It is good engineering practice to install appropriate pressure gauges as strategic points on the distribution systems of each water supply.

Apparatus

3.90 A pressure indicator or recorder 0–10 barg should be used.

Method

3.91 Connect the pressure sensor to each of the water supply pipes to the washer-disinfector, as close to the washer-disinfector as practicable, on the supply side of the washer-disinfector isolating valve for that supply. Record or observe and note the static pressure when the valve is closed and the pressure indicated throughout a normal operating cycle. When the water service also supplies other equipment on the same supply line, run the test both with the other equipment operating throughout the test, or their operation simulated by an appropriate discharge to waste, and with no other equipment operating.

Results

3.92 The water pressure should remain within the supply pressure limits specified by the washer-disinfector manufacturer.

Appearance

3.93 All the water supplied to the washer-disinfector should be clean, colourless and free from visible particulate matter. The appearance of the sample should be assessed visually.

Apparatus

3.94 The following equipment should be used:

- clean, clear glass bottle and stopper;
- filter paper (qualitative grade), filter funnel and holder.

Method

3.95 Transfer an aliquot to a clear colourless glass bottle, which should then be tightly stoppered. Shake the sample well and examine visually against a white background, preferably in a north light.

3.96 If the sample is turbid, filter through a qualitative grade filter paper. Examine the filter paper and report a description of the retained material. Visually examine the filtrate as previously described.

3.97 Report the appearance in terms of both colour and the intensity of any colour. If the sample is coloured, examine it carefully to see whether visible evidence of colloidal material is present.

Results

3.98 All the samples tested should be clear, bright and colourless.

pH

3.99 Two suitable methods for on-site measurement of pH are available; the colour disc comparator and portable pH meter.

Apparatus

3.100 The following equipment should be used:

- pH meter:

 (i) Several commercially available small portable pH meters are available. A number of these include built-in temperature compensation. These should not be used to measure pH solutions of low ionic strength, although they provide suitable accuracy for most general applications. Their use for the determination of pH in water of high purity might give unstable or unreliable readings;

 (ii) Only those pH meters specifically designed for the measurement of low ionic strength solutions should be used for determining the pH of DI or RO water.

- Colour disc comparator:

 (i) Colorimetric tests for pH are suitable for high purity, low conductivity, water samples of the type required to be tested;

 (ii) Since colorimeter methods are being used for other field tests this may be the more appropriate method;

 (iii) The accuracy is limited and discrimination may not be better than 0.2
pH units. This is, however, quite suitable for field tests;

(iv) Colour, turbidity or strong oxidants in the sample all interfere with the test;

(v) A narrow range indicator, or two for use on successive samples, should be chosen to cover the required range of pH 4 to pH 1. Manufacturers of colorimeters usually provide indicators to cover a range of 2 or 3 pH units. Wide-range indicators should not be used because of their poor discrimination.

Method

3.101 Operate the test kit in accordance with the manufacturer’s instructions. Pay particular attention to using accurate volumes of both sample and reagent and monitoring both temperature and reaction time.

3.102 Match the colour of the reacted sample against the calibrated colour disc viewed through a blank sample. Read off the value in pH units directly from the disc.

3.103 Verify the calibration using standard buffer solutions made up in advance and kept in capped bottles until required. The buffer solutions should be chosen to have a pH in the midpoint of range of the calibrated colour discs to be used in the determination.

Results

3.104 The indicated value should be in the range 5.5 to 8.0. Photometric apparatus with somewhat better discrimination is also commercially available.

Electrical conductivity

Equipment and materials

3.105 There is a wide variety of portable conductivity meters available. The unit chosen should meet the performance criteria given in this clause, which will allow its use for measuring conductivity of very pure water through to boiler water containing in excess of 5000 ppm TDS.

3.106 Meters are available to cover the range 0.1–20,000 mS m–1 at 25°C. Conductivity meters may also be calibrated in μS cm–1. The meter, or meters, used should cover the following ranges:

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–199 μS cm–1</td>
<td>0.1 μS cm–1</td>
<td>±1% full scale</td>
</tr>
<tr>
<td>10–1990 μS cm–1</td>
<td>1 μS cm–1</td>
<td>±1.5% full scale</td>
</tr>
</tbody>
</table>

3.107 They should also be temperature-compensated over the range 0–40°C.

Method

3.108 Use the following method for electrical conductivity calibration.

3.109 Verify the calibration of the meter against 0.001 molar and 0.0005 molar solutions of potassium chloride and pure water as working standards. These give conductivities at 25°C of 14.7 mS m–1 and 84 μS cm–1 and <0.06 μS cm–1.

3.110 Prepare the potassium chloride solutions by dilution of a 0.1 molar solution.

3.111 The working standards are stable for up to one week when stored in cool conditions, in a well stoppered container.

3.112 A comprehensive range of standard conductivity reference solutions, including pure water standards, also known as absolute water, are available commercially, standardized at 25°C and traceable to national standard reference materials.

3.113 After calibration rinse the sample cup or immersion probe thoroughly with pure water.

3.114 Collect the sample in a high-density polyethylene bottle and test as soon as practicable.

3.115 Pour an aliquot of the sample into the sample cup of the conductivity meter or, for meters with an immersion probe, into the clean beaker. Follow the meter manufacturer’s instructions for making the measurement; this will usually require a short stabilization period before noting the reading.

Results

3.116 The conductivity at 25°C should not exceed:

- 30 μS cm–1 for reverse osmosis water;
- 30 μS cm–1 for deionised water;
- 300 μS cm–1 for softened or mains water.

Note

Conductivity levels in excess of this value are indicative of a high concentration of dissolved solids.

Hardness (as CaCO₃)

3.117 Hardness of water is due to the presence of dissolved salts of the alkaline earth metals, calcium, magnesium and strontium. Their presence causes limescale formation from heated or evaporated water, can inactivate detergents and disinfectants and causes scaling on load items.
Ion-selective electrodes (ISE) method

3.118 Ion-selective electrodes are available for calcium and also for divalent cations (total hardness). Ion-selective electrodes are not specific for a particular ion but have a relative selectivity for a particular ion or group of ions. They are sensors that provide a potentiometric response to the activity of the ions in solution. The activity is proportional to the concentration for determinations carried out in solutions of the same ionic strength.

3.119 Adjust both analyte and calibration standard solutions to the same ionic strength. Use a high impedance millivoltmeter to measure the potential between the ion selective electrode and a suitable reference electrode. The measured potential is proportional to the logarithm of the concentration of the ion(s) in solution.

3.120 The optimum working pH range is 4 to 9 and the ionic strength of the sample should be adjusted for ionic strength. An adjustment buffer consisting of 4M KCl solution is often used. Phosphate buffers should not be used since the calcium activity will be lowered by complexation or precipitation.

3.121 The electrodes are free from any major interference except zinc ions. They are, however, poisoned by a number of biological fluids.

3.122 The calcium electrode requires a single junction reference electrode. Calibration is made against two or more standard solutions. These are commercially available.

3.123 The calcium selective electrodes that are available have a Nernstian response for concentrations from 1 M down to about 5 x 10⁻⁶ M and a selectivity ratio of better than 2000 against magnesium. This range is suitable for analysis of softened water and purified water (RO or DI).

Titrimetric method

3.124 Commercially available kits for the titrimetric determination of both total hardness and calcium hardness are available. They are based on the same reaction in which divalent cations are complexed with the disodium salt of ethylenediaminetetraacetic acid (EDTA). When the reaction is carried out, at pH 10 to 11, with eriochrome black as the complexiometric indicator, all the calcium and magnesium ions are chelated by the EDTA and the absence of free calcium and magnesium ions causes a colour change in the indicator.

3.125 At pH values above 12 magnesium ions are precipitated as the hydroxide and do not react with the EDTA. Calcium hardness can be determined using Patton and Reeder’s indicator powder as a complexiometric indicator.

3.126 The commercially available kits often use novel titration methods instead of burettes. The test reagents are specific to each kit. The manufacturer’s instructions should be followed.

3.127 Range: determinations within the range 5–400 mg/L can be made. The method is not applicable to purified water or condensate from clean or pure steam, which should have calcium concentrations well below the range for accurate determinations.

Results

3.128 The hardness expressed as mg/L CaCO₃ should not exceed 50 mg/L for softened water.

3.129 Water with values >210 mg/L should be regarded as unsuitable for use in washer-disinfectors without treatment.

Chloride

3.130 The presence of significant levels of chloride ions in water supplied to washer-disinfectors may cause pitting and corrosion in metallic items in the load (including stainless steel). Significant levels of chloride are present in untreated mains water supplies to which it is added for its anti-microbial activity. High chloride concentrations can be associated with breakthrough from a defective, or incorrectly operated, water softener or deioniser.

Ion selective electrode (ISE) method

3.131 The commercially available chloride selective electrodes have a working range from 1 M to 10–5 M. They work over the pH range 3–10; adjust the sample for ionic strength using an adjustment buffer consisting of 5 M NaNO₃ solution.

3.132 The electrodes show poor selectivity against other halides and cyanide ions. Sulphide ions should be absent.

3.133 The chloride electrode requires a double junction 0.1 M NaNO₃ reference electrode.

3.134 Conduct the calibration against two or more standard solutions.

Note
These are commercially available.
Silver nitrate titration method

3.135 Commercial titrimetric kits are available that are based on the method described in BS 6068-2.37:1990, ISO 9297:1989.

3.136 Titrate the sample at pH 5 to pH 9 with silver nitrate using a potassium chromate indicator solution.

3.137 The analytical range is 5–150 mg/L.

3.138 This method is not quantitative for purified water, which should have chloride concentrations well below the range for accurate determinations; it can be used, however, as a limit test. The BP limit test, based on comparison of the turbidity obtained from a known chloride concentration, can also be used.

Results

3.139 The chloride concentration in final rinse water for washer-disinfectors processing metal items should not exceed 50 mg/L.

3.140 The chloride concentration in other water supplies for washer-disinfectors processing metal items should not exceed 120 mg/L.

Bacterial endotoxins

3.141 When the intended use of the washer-disinfector is for products that will be used invasively, for example, surgical instruments, the water used for final rinsing can be tested for bacterial endotoxins (limulus amoebocyte lysate (LAL) test). It is recommended that this test need only be carried be out where there are documented concerns with water supply for decontamination process. Where this test is deemed necessary, quantified results are needed to determine the levels of endotoxin present.

3.142 The method describes the detection of bacterial endotoxin by the limulus amoebocyte lysate (LAL) gel formation method.

3.143 Other LAL methods (chromogenic, turbidimetric or kinetic turbidimetric) are equally suitable.

3.144 The water sample is incubated, in a test tube, with an equal volume of lysate for 1 h at 37°C and examined for the formation of a solid clot that holds upon inversion of the test tube. The lysate, reconstituted from lyophilised LAL, is selected with the required level of sensitivity. Semi-quantitative results may be obtained by testing dilutions of the sample to be tested and by the use of lysates with different levels of sensitivity.

Total viable count

3.145 When the operating cycle of the washer-disinfector requires that the product is rinsed after the disinfection stage the rinse water should be consistent and not present a risk of microbial contamination to devices used for clinical activity patients, which could compromise the intended use of the load. A total viable count should be made on the final rinse water.

3.146 The test method, as described in BS EN ISO 15883 Part 1, sets out a particular test method with set culture media and incubation times/temperatures. If particular microorganisms are of concern, other recovery conditions (growth medium, incubation temperature, etc.) should be used as appropriate. The advice of the microbiologist should be sought.

3.147 A test can be carried out pre-installation or operational test to determine the water quality and an assessment for any treatment that may be necessary.

3.148 For other washer-disinfectors the test should be carried out when requested by the User as an installation test and repeated annually thereafter.
Chapter 4 Operational management

Introduction

4.1 This chapter covers the maintenance and operation of the various types of washer-disinfectors used in healthcare facilities.

4.2 Terminology used in decontamination has long been inconsistent and this has often led to ambiguities. European and International Standards adopt a common set of definitions for terms relating to decontamination. Reference should be made to these documents for definitions.

4.3 The testing, maintenance and reporting procedures recommended in this section are based upon good practice in both the United Kingdom and the rest of Europe, as formalized in new European Standards designed to support the new EU Directives. They are designed to prevent the possibility of gross failure and serious incident.

4.4 Good staff morale is important. Anomalous behaviour that may foreshadow a malfunction of a washer-disinfector is often first noticed by an alert operator or other relatively junior employee. It is vital that staff report such observations promptly to management, and that appropriate remedial action is taken.

4.5 It is important that all washer-disinfectors are effective in achieving the performance required to produce a clean and disinfected product, and that they are safe in operation.

4.6 Failure to achieve the required standard of cleanliness might also impair the capability of the process to achieve disinfection/subsequent sterilization.

4.7 The cleanliness and microbial safety of all products processed in a washer-disinfector ultimately depends upon the care taken by the personnel responsible for its design, manufacture, installation, operation, test and maintenance.

4.8 Cleaning and disinfection might appear to be relatively simple processes, but considerable care is needed to consistently achieve satisfactory results.

4.9 Responsibility for assurance on these points rests variously with the AE(D), DE(W) AP(D), CP(D), the Microbiologist, the Control of Infection Officer and the User.

4.10 A permit to work system should be utilized as given in Section 6 of WHTM 01-01 Part A.

An example of good housekeeping to ensure rinse-arms are cleaned

Equipment damage

4.11 The User should ensure that chemical additives used in the decontamination process are compatible with the materials of which the washer-disinfector is constructed and also with the items to be processed. No changes to process chemicals should be instigated as part of a validated process.

4.12 Most washer-disinfectors are made partly or wholly of stainless steel; the water supplied to the chamber, and the detergent and other chemical additives used, should have a low chloride content to minimize the risk of corrosion.

4.13 Lubricants, if installed, for squeeze tubes on peristaltic pumps and other dispensing devices should be chosen and used in accordance with the manufacturer’s instructions.

4.14 Care should be taken to ensure that the walls of ultrasonic tanks are not scratched as this can cause serious cavitation erosion.
4.15 Operators should be instructed never to drop or rest load items directly on the bottom of an ultrasonic tank.

Maintenance

Introduction

4.16 Decontamination is a set of processes, the efficacy of which cannot be verified retrospectively by inspection or testing of the product before use. For this reason decontamination processes (cleaning and disinfection and/or sterilization) have to be validated before use, the performance of the process routinely monitored, and the equipment maintained.

4.17 Means of ensuring that a washer-disinfector is fit for its intended purpose will include the validation and testing programme recommended in Chapter 2, 'Validation and verification', and also the programme of planned maintenance recommended in this section.

4.18 The philosophy of maintenance and testing embodies two main principles to ensure that the required standards of performance and safety are met and maintained:

- All washer-disinfectors are subject to a carefully planned programme of tests to monitor their performance;
- All washer-disinfectors are subjected to a planned programme of preventive maintenance.

4.19 Expertise on the maintenance of washer-disinfectors is available at three levels: the CP(D), AP(D) and NWSSP-FS. The roles and responsibilities of all the responsible engineering staff are defined in the 'Functional Responsibilities' section of WHTM 01-01 Part A.

4.20 Recommendations for testing of washer-disinfectors are given in Chapter 2, 'Validation and verification'.

Planned maintenance programme

4.21 The planned maintenance (PM) programme should be designed according to the manufacturer's instructions and based upon the risk of malfunction, severity of malfunction, legal requirements, e.g. pressure systems safety regulations, practicalities of maintenance provision and ability to maintain an effective and reliable operation of equipment.

All parts of the control system vital to the correct functioning or safety of the washer-disinfector should be tested at pre-determined intervals (weekly, quarterly, bi-annually, annually) as recommended by the manufacturer.

Design of a PM programme

4.22 The PM programme recommended by the manufacturer should be supplied and should be used. The maintenance programme may be modified subsequently to take account of equipment use, equipment history and local conditions after a suitable period of operational experience.

4.23 The manufacturer's schedule may be modified if necessary but only after discussion with the NWSSP-FS, AP(D) and User.

4.24 Although the manufacturer might carry out certain inspection and maintenance procedures under the terms of its guarantee, these might not constitute a full PM programme. The User should therefore ensure that the complete PM programme is carried out by the CP(D), who may be an employee of the manufacturer, during the guarantee period. The User should also implement any reasonable instructions given by the manufacturer during this period. Failure to carry out maintenance tasks and periodic tests could affect safety. It could also allow a contractor to place some, if not all of his liability on to the management. Where maintenance is carried out under lump sum term contract (see Chapter 1, 'Design and pre-purchase considerations') such failure is tantamount to breach of contract and can give the contractor cause to terminate the contract if it so wishes.

4.25 A set of procedures should be developed for each model of washer-disinfector, each containing full instructions for a particular maintenance task.

4.26 The frequency with which each task will need to be carried out will depend, in part, on the usage level for the washer-disinfector and on the quality of the water/steam supplied to the washer-disinfector. It might be necessary to adjust the programme so that work is carried out more frequently on machines that are heavily used/supplied with hard water.

4.27 It is important that maintenance is planned so that the washer-disinfector is out of service as little as possible. Maintenance should, where practicable, be scheduled to immediately precede the periodic tests as specified in Chapter 2, 'Validation and verification'.

4.28 Systematic records should be kept of all maintenance work undertaken both to demonstrate that the work has been carried out and also to facilitate periodic review of the PM programme.

4.29 Log books and maintenance files should be maintained for each item of equipment either as electronic or paper records.
Warranty period

4.30 After the purchase of a new washer-disinfector the manufacturer might carry out certain inspection and maintenance procedures under the terms of the warranty. This might not be a full PM programme. The User should ensure that the complete PM programme is carried out as specified by the manufacturer during the warranty period.

4.31 The User should comply with any reasonable instructions from the manufacturer during the warranty period.

Review of PM programme

4.32 The PM programme should be reviewed at least annually to ensure that the equipment is being fully maintained but without any unnecessary maintenance activity. The review should aim to identify:
 a. the adequacy of maintenance records and compliance with the PM programme;
 b. any emerging defects;
 c. any changes required to the PM programme;
 d. any changes required to any maintenance procedure;
 e. any additional training required by maintenance personnel;
 f. any external advice such as that provided by NWSSP-FS, based upon experience of similar equipment on other sites.

4.33 Proposed changes to the PM programme should be made in consultation with the NWSSP/FS or manufacturer whenever possible.

Modifications

4.34 Occasionally, modifications to the washer-disinfector might be recommended by the manufacturer or by NWSSP-FS for reasons of efficacy and safety. The User should arrange for such modifications to be carried out within a reasonable period, normally coinciding with a scheduled maintenance/validation session.

Routine housekeeping

4.35 Certain maintenance tasks may be carried out by the User, or by the Operator under the User’s supervision, and should be recorded in the washer-disinfector log. Examples of such tasks include:
 a. checking that the rotating spray arms are free to rotate;
 b. checking that nozzles are not blocked;
 c. removal, cleaning and replacement of strainers and filters;
 d. checking that the supply of chemical additives is sufficient for the day’s use and replenishing if necessary;
 e. cleaning the inside of the chamber;
 f. cleaning the external surfaces of the washer-disinfector;
 g. washing of loading side conveyors and trolleys;
 h. for washer-disinfectors with a built-in water softener, checking the level of salt in the regeneration tank and replenishing if necessary.

Pressure Systems Safety Regulations

4.36 Requirements of the Pressure Systems Safety Regulations shall be met following advice from the CP(PS).

Features requiring special attention

Leak tightness of doors

4.37 The door(s) of the washer-disinfector are intended to prevent the escape of fluids into the surrounding environment, to ensure freedom from aerosols that might be potentially infectious.

4.38 Damaged door seals are the major potential source of leaks and should receive careful attention as advised by the manufacturer.

4.39 The working life of door seals can be prolonged by regular cleaning.

4.40 Door seals should be renewed with spares provided, or approved, by the manufacturer at recommended intervals or when there is any sign of damage/deterioration.

Door interlocks

4.41 The interlocks on door(s) of the washer-disinfector are intended to:
 a. prevent the operator gaining access to the load during processing;
 b. prevent both the loading and unloading doors being open at the same time on “pass-through” washer-disinfectors;
 c. prevent the operator gaining direct access to a load that has not been satisfactorily processed.

4.42 Maintenance and inspection of door safety devices and door interlocking and chamber sealing systems should be carried out in accordance with the manufacturer’s written instructions.

4.43 Security and settings of door safety switches and interlocks should be checked at least monthly. The setting should be within the limits specified by the manufacturer.
Chemical dosing systems

4.44 The correct amount of chemical additive should be administered at the right time in the operating cycle to ensure the correct functioning of a washer-disinfector.

4.45 The chemical additive dosing system shall be subjected to regular (at least daily) inspection, maintenance and test. This should include:

a. visual inspection of all piping to ensure freedom from leaks;

b. visual inspection/testing to ensure that neither the delivery or pick-up piping is blocked by coagulated or hardened chemical additive (many of the chemical additives used are a viscous suspension), followed by cleaning or replacing piping as necessary;

c. lubrication of the pinch tubing on peristaltic pumps in accordance with the manufacturer’s instructions;

d. ensuring that there is sufficient additives(s) available and that it (they) are being dosed;

e. Care should be taken when changing chemical containers to avoid misconnection of process chemicals. Clear labelling of each dosing system should be in place, preferably dedicated connections to ensure there is no potential for error.

Water sprays and jets

4.46 The correct flow and distribution of water and aqueous solutions throughout the chamber and load are essential to the correct functioning of washer-disinfector. The spray system should be checked on a daily basis as part of the routine housekeeping tasks carried out by the User.

4.47 In addition, maintenance staff should also check the system at least weekly; this should include:

- checking that the rotating spray arms, both installed within the chamber and located on load carriers, are free to rotate;
- checking that nozzles are not blocked; clean and/or replace if necessary;
- checking for wear in bearings of rotating parts; replace any worn parts as necessary;
- checking the mating of any necessary connection between the load carrier and the water supply in the chamber.

Ultrasonic transducers

4.48 Many ultrasonic cleaners are not fitted with means to provide continuous monitoring of performance. Transducers can fail or become detached from the ultrasonic tank without being noticed by the Operator, other than by the deterioration in the cleaning performance.

4.49 Periodic functional testing of ultrasonic cleaners is defined in this WHTM.

4.50 The tank of the ultrasonic cleaner should be cleaned with a suitable neutral detergent and soft brush at least weekly.

Ventilation plant

4.51 Correct operation of ventilation plant used in decontamination area’s essential to ensure:

a. the safe operation of washer-disinfectors that include interlocking systems to ensure that there is correct operation of both the room ventilation system and the process specific extraction system. Such systems should be balanced on installation and routinely checked thereafter;

b. the efficient operation of the drying stage, where this is included to remove the high levels of moisture present post process;

c. the maintenance of a comfortable working environment for staff working within the area wearing appropriate forms of personal protective equipment.

See HBN 13 for the environmental and ventilation requirements for SSD’s.

4.52 All ventilation systems associated with a washer-disinfector should be inspected, serviced and maintained at least every six months. Guidance on maintenance is given in Welsh Health Technical Memorandum 03-01 Part B. Washer-disinfectors are often designed to be connected to extraction systems to create a slight negative pressure to minimise the potential for discharge of aerosols into the environment.

4.53 Washer-disinfectors that include a chemical disinfection stage should have the associated ventilation system examined and tested annually.

4.54 Before undertaking maintenance work on the machine covering/fascia, or its associated ventilation system, it may need to be decontaminated and the advice of the designated safety officer should be sought. A permit-to-work system should be in operation.

Returning a washer-disinfector to service

4.55 Whenever any work has been carried out on a washer-disinfector, whether or not this was part of the PM programme, the user should be satisfied that it is fit for use. Following major repairs, overhauls, etc. which might affect the performance
of the washer-disinfector, the User and AP(D) with assistance from the NWSSP-FS, should draw up a schedule of checks and tests to be carried out before the washer-disinfector is returned to service. This should include some or all of the recommissioning (yearly) tests specified in Chapter 2, 'Validation and verification'. See also guidance on the permit to work system given in the ‘General’ section of WHTM 01-01 Part A.

Troubleshooting

4.56 A failure to clean all the items processed in a load through a washer-disinfector is the most frequently observed fault. The most common causes of this type of failure, and thus those that should be considered first in any investigation, are:

a. incorrect loading:
 (i) items that are not correctly located in an appropriate load carrier will not be subjected to the intended washing process;
 (ii) overloaded baskets and load carriers allow some load items to shield others from spray jets, etc.;
 (iii) hinged instruments that are not opened prior to washing will not be effectively cleaned;

b. blocked spray jets, spray arms that are not free to rotate or a blocked strainer in the chamber base;

c. soiled instruments which have been stored for prolonged periods before decontamination: blood and protein will coagulate if stored for more than 8 h making this hard to remove;

d. soiled instruments subjected to heat treatment before decontamination: this will lead to coagulation of blood and protein making this hard to remove;

e. incorrect choice or quantity of detergent:
 (i) the detergent chosen should be compatible with the loads to be processed, the soil to be removed and the quality of water supplied;
 (ii) malfunction of the dosing system may cause the wrong quantity of chemical additive to be used: too little will not provide the detergency required but too much may also impair cleaning by causing excessive foaming, etc.;

f. Inappropriate water quality:
 (i) initial flush with water that is too hot will lead to coagulation of blood and protein making this hard to remove;
 (ii) the hardness of water used during washing should be compatible with the detergent chosen;
 (iii) hard water used in the final rinse can leave deposits on the surface of instruments.

4.57 The choice of detergent should be based upon a number of factors. These include:

a. the quality of water available;

b. the nature of the load;

c. the nature of the soiling to be removed;

d. the nature of the washing process.

4.58 Advice should be sought from both the washer-disinfector and detergent manufacturers.

4.59 The quality of water used for the final rinse stage is important in ensuring freedom from scaling, process residuals, etc.
Appendix 1:

Further information on the testing methodology for water quality used within washer disinfectors

Certain chemical purity tests were identified as periodic tests in HTM 2030. However, evidence based research produced in the 'Water quality requirements for surgical instrument reprocessing', carried out by SMTL on behalf of the All Wales Decontamination Group, indicates that the variables listed do not normally affect the decontamination process and it is deemed to be unnecessary to test routinely. These variables may need to be tested and assessed where there are operational problems or disputes with any part of the decontamination process for medical devices.

The variables in question are:

- Total Dissolved Solids;
- Heavy Metals;
- Iron;
- Silicates;
- Phosphate.

Total dissolved solids

A.1 The laboratory test for the determination of dissolved solids is a gravimetric method. This involves determining the weight of the residue obtained by evaporating a known sample volume to dryness. It is recommended that this test need only be carried out where there are documented concerns with water supply for decontamination process.

A.2 When a water sample contains predominantly ionisable solids in solution, and the composition of the various constituents is reasonably constant, a good estimate of the total dissolved solids can be obtained from the electrical conductivity of the sample which can be used to determine concentrations up to 10,000 mg/L total dissolved solids.

Conductivity method

A.3 The following apparatus should be used:

a. conductivity meter (see paragraph 3.105, ‘Electrical conductivity’);

b. phenolphthalein indicator;

c. 5% w/w acetic acid solution;

d. 5% w/w sodium hydroxide solution.

A.4 Neutralize the test sample, using phenolphthalein as the indicator, by drop-wise addition of 5% w/w sodium hydroxide solution or 5% w/w acetic acid solution. Measure the conductivity of the sample (see ‘Electrical conductivity’) and multiply by the conversion factor to give an estimate of the TDS in mg/L.

A.5 The conversion factor can be derived experimentally for waters of consistent ionic composition by making direct comparison of the measured mass of total dissolved solids and the electrical conductivity.

A.6 Alternatively, an arbitrary factor can be used. The one most commonly chosen is based on sodium sulphate being the ionic species.

A.7 For conductivity at 25°C measured in mS m–1:

\[\text{TDS mg/L} = \text{electrical conductivity mS m}^{-1} \times 1.6. \]

A.8 Conductivity meters calibrated in TDS mg/L are also available. Care should be taken to ensure that the conversion factor used is appropriate.

A.9 Standard salt solutions are available commercially as ready-to-use standard solutions traceable to NIST standard reference materials. A TDS standard solution such as 1382 ppm NaCl, and a tenfold dilution of it, can be used to verify the calibration.

Results

A.10 The estimate of total dissolved solids should not exceed 4 mg 100 mL–1 for purified water (RO or DI).

Evaporative residue method

A.11 The following apparatus should be used:

a. silica or borosilicate dish or beaker of >150 mL capacity;

b. oven set to 110°C ± 2°C;

c. boiling water bath or heating mantle set to 100°C ± 2°C;

d. 1 L polypropylene bottle;
e. balance weighing to 0.1 mg;
f. 100 mL pipette or measuring cylinder.

A.12 Collect a 1 L sample.

A.13 Take the silica dish (or equivalent), dried for 2 h in the oven set to 100º C ± 2º C and then cooled to ambient temperature, and weigh it to the nearest 0.1 mg.

A.14 Dispense 100 mL of the sample into the weighed dish and evaporate it over the boiling water bath until visibly dry. Evaporate two further 100 mL aliquots of the sample in the same dish in the same manner.

A.15 Dry the dish in the oven to constant weight to an accuracy of 0.1 mg.

A.16 Calculate the mass of residue in the dish and hence calculate the mass of residue per 100 mL of water.

Results

A.17 The evaporative residue should not exceed 4 mg 100 mL–1 for purified water (RO or DI).

Heavy metals

A.18 Heavy metals are generally toxic in low concentrations and, as far as possible, should be absent from water used to process items that will be used invasively. It is recommended that this test need only be carried out where there are documented concerns with water supply for the decontamination process.

Method

A.19 Determine the total concentration of heavy metals using the limit test described in the British Pharmacopoeia, see also BS 6068-2.29:1987, ISO 8288-1986.

Results

A.20 The total concentration of heavy metals should not exceed 10 mg/L determined as lead.

Iron

A.21 The presence of significant concentrations of iron in water used to process stainless steel items promotes corrosion of those items and exacerbates the effect of any chloride ions that might be present. It is recommended that a test for this variable need only be carried out where there are documented concerns with water supply for the decontamination process.

A.22 One of the commercially available colour disc comparator kits should be used for this test. Typically these are based on the reference method described in BS 6068-2.2:1983, ISO 6332-1982. The reaction of iron (II) with 1,10 phenanthroline in solution yields a red complex with peak absorption at around 510 nm. Most kits include methods and reagents for pretreatment to reduce any iron (III) compounds to the iron (II) form in which they can be analysed.

A.23 This method is generally suitable for determination of the concentration of iron in untreated water but is not sufficiently accurate for determination of the concentration specified for steam condensate which at ≤0.1 mg/L is at the limit of discrimination of most systems.

Apparatus

A.24 The following apparatus should be used:

- a. colour disc comparator kit;
- b. reagents;
- c. a standard 0.702 g/L iron (II) ammonium sulphate solution (NH₄)₂Fe(SO₄)₂;
- d. a mercury in glass thermometer graduated in 0.5ºC steps conforming to BS 1704:1985, ISO 1770:1981.

Method

A.25 Prepare a standard 0.702 g/L iron (II) ammonium sulphate solution (NH₄)₂Fe(SO₄)₂ which provides a standard solution of 100 mg/L iron. Prepare the solution as required and do not store. Prepare working standards spanning the usable range of the colour disc comparator by appropriate dilution.

A.26 Measure the sample temperature before commencing the analysis.

A.27 After the kit manufacturer’s specified reaction time has elapsed use the colour intensity of the sample to estimate the concentration of iron in the sample.

A.28 For details of the colorimetric method, see the method for the determination of silicate.
Results
A.29 Untreated and softened water should have less than 2 mg/L iron present.

Phosphate
A.30 The test method measures only orthophosphate. Pre-treatment to convert other forms of phosphate to orthophosphate should be used if appropriate. Some other phosphates such as condensed phosphates and labile organic phosphates are slowly hydrolysed under the acidic conditions used for the test. It is recommended that a test for this variable need only be carried out where there are documented concerns with water supply for the decontamination process.

A.31 The method depends on the reaction of phosphate in acidic solution with molybdate and antimony ions to form an antimony phosphomolybdate complex, which on reduction with ascorbic acid forms a blue coloured complex having maximum absorbance at 882 nm.

A.32 The presence of oxidising agents and sulphides will interfere with the reaction. Otherwise there are no particularly sensitive interferences.

Apparatus
A.33 The following apparatus should be used:
 a. colour disc comparator kit;
 b. reagents;
 c. sample container;
 d. glassware;
 e. a standardised solution containing 100 mg/L potassium dihydrogen orthophosphate for preparation of calibration standards.

Method
A.34 React the sample in acidic solution with antimony and molybdate ions to form an antimony phosphomolybdate complex. Reduce with ascorbic acid to form a molybdenum blue complex.

A.35 Prepare a stock standard solution containing 100 mg/L potassium dihydrogen orthophosphate and dilute to provide suitable working standards for calibration verification. The concentrated stock solution is stable for several weeks.

A.36 Test the samples as soon as possible after sampling. If sampling will be delayed by more than 4 h store the sample(s) in suitable glass bottles at 2–5 ºC for up to 24 h.

A.37 Follow the manufacturer’s instructions precisely.

A.38 For details of the colorimetric method, see the description given in the method for the determination of silicate.

A.39 The temperature has a significant effect on reaction time, at 20 ºC the reaction is typically completed within 3–4 min. Before making the measurement ensure that the reaction is complete but avoid excessive delays, which can cause errors from hydrolysis of other phosphates. Read the measurement at 10–15 min after the start of the reaction.

Results
A.40 The phosphate concentration of rinse water used for metal load items should not exceed 0.2 mg/L expressed as P2O5.
Silicate

A.41 Silicate reacts with metal items, including stainless steel, causing corrosion and discoloration. This is accentuated at elevated temperatures. It is recommended that a test for this variable need only be need for this variable is carried be out where there are documented concerns with water supply for the decontamination process.

A.42 This method is based on the use of one of the commercially available colour disc comparator kits. Typically these are based on the analytical method described in BS 2690 104, which is a recognised reference method. Reactive silica is reacted with ammonium molybdate under acidic conditions to form molybdisilicic acid which is then reduced to molybdenum blue.

A.43 The analytical range depends on the calibrated colour disc supplied with the chosen test kit. A range of 0–5 mg/L is commercially available and provides adequate precision. Discs offering extended ranges should not be used as the discrimination of intermediate concentrations becomes unacceptably poor.

A.44 The method is generally suitable for determination of SiO₂ level in softened and untreated water but is only sufficiently sensitive to act as a limit test for purified (RO or DI) water.

Apparatus

A.45 The following apparatus should be used:
 a. colour disc comparator kit;
 b. reagents;
 c. a standard 3.132 g/L disodium hexafluorosilicate solution (Na₂SiF₆);
 d. a mercury-in-glass thermometer graduated in 0.5°C steps conforming to BS 1704:1985, ISO 1770:1981.

Method

A.46 Prepare a standard 3.132 g/L disodium hexafluorosilicate solution (Na₂SiF₆), providing a stock standard solution of 1000 mg/L as SiO₂. The solution is stable for several months after preparation stored in a sealed polyethylene bottle. Working standards spanning the usable range of the colour disc comparator can be prepared by appropriate dilution.

A.47 Measure the sample temperature before commencing the analysis using the mercury-in-glass thermometer.

Note

For most kits the temperature should be 15°C to ensure that the reaction will go to completion. If the sample temperature is below this, or the minimum temperature specified by the manufacturer, the sample should be warmed.

A.48 After the kit manufacturer’s specified reaction time has elapsed use the colour intensity of the sample to estimate the concentration of silicate in the sample.

A.49 With the calibrated colour disc for silica in the comparator, an untreated water sample in the blank cuvette and the reacted sample in the sample cuvette, placed in the comparator cell holder, visually match the colour density developed in the sample against the alibrated colour disc viewed through the untreated sample. Read off the displayed value of SiO₂ concentration from the calibrated disc.

A.50 Serial dilutions of the standard solution may be used to verify the calibration of the comparator disc.

Results

A.51 Untreated and softened water should have less than 2 mg/L silicate expressed as SiO₂, determined as reactive silica, present.

A.52 Purified (DI or RO) water should have not more than 0.2 mg/L silicate expressed as SiO₂, determined as reactive silica, present.
Appendix 2:
Technical specification template (TST) for the purchase of washer-disinfectors for surgical instruments

Note
This example of the TST is for reference purpose; amended versions are available from NWSSP-FS upon request. It is essential this is completed as part of formal procurement contract when purchasing new washer disinfectors.
Technical Specification

Template for the purchase washer disinfectors for surgical instruments

Section 1

Reference document TST 30 WD in support of WHTM 01.01

<table>
<thead>
<tr>
<th>Name of Health Board</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchaser</td>
<td></td>
</tr>
<tr>
<td>Hospital site</td>
<td></td>
</tr>
<tr>
<td>Department</td>
<td></td>
</tr>
<tr>
<td>Name of SSD Manager and contact details</td>
<td></td>
</tr>
<tr>
<td>Name of Estates contact and details</td>
<td></td>
</tr>
<tr>
<td>Technical support</td>
<td>NHS Wales Shared Services Partnership – Facilities Services (NWSSP-FS) Telephone: 029 2031 5500 This includes the services of the Decontamination Engineers (DE(W)) and the Authorising Engineer (Decontamination) (AE(D))</td>
</tr>
</tbody>
</table>

The machine(s) are to be supplied under the agreement of NHS Wales Shared Services Partnership - Procurement Services and the NHS Supply Chain framework agreement.

Site visit(s) are required by the Supplier to ensure that the machine(s) will fit correctly, and no problems will be encountered during the delivery process. All engineering systems and services must be surveyed during the visit(s).
The machine(s) are to be supplied under the agreement of NHS Wales Shared Services Partnership – Procurement Services and the NHS Supply Chain framework agreement.

Technical support is provided by NHS Wales Shared Services Partnership – Facilities Services.

Site visit(s) are required by the Supplier to ensure that the machine(s) will fit correctly and no problems will be encountered during the delivery process. All engineering systems and services must be surveyed during the visit(s).

All equipment suppliers must ensure that all items listed in this template are essential requirements and not optional – the Supplier must make clear to the Client any further available options for a final decision and agree the specification before agreements are made on the contract price.

Note: It is a requirement that where service arrangements are taken in conjunction with the manufacturer and in alignment with maintenance schedules, a guarantee of 95% uptime is underwritten, providing that the operation of the washer-disinfector is completed as per the manufacturer’s training and errors are not proved to be as a result of external factors, e.g. water supply, operator errors.

1 Washer disinfector selection details

Total number of machines required ………… as below

<table>
<thead>
<tr>
<th>Washer disinfector type -</th>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard cabinet</td>
<td>Cabinet single door</td>
<td>Multi chamber design</td>
</tr>
<tr>
<td></td>
<td>Pass though double interlocked doors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers of machines	

Chamber capacity- size (nominal)	
Special requirements	
Door movement preferred	
(Upward closing, drop down door, etc.)	

Surgical specialties of department (optional details)

<table>
<thead>
<tr>
<th>Types of surgery</th>
<th>Daily throughput</th>
<th>Loading system</th>
<th>General comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The supplier must discuss details and installation with the customer prior to purchase to ensure.

Type C

Multi chamber design and sections required

Chamber function	

2 Washer disinfecter cycles requirements

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Required Yes or No</th>
<th>Options and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Washer disinfecter process chemical(s) – options

<table>
<thead>
<tr>
<th>Chemistry used within operating cycles</th>
<th>Required Yes or No</th>
<th>Options and preferred choice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Details of delivery /installation requirements

4.1 Any comments on any interim storage and/or installation for the delivered equipment prior to final installation.
4.2 It is the responsibility of the Supplier to establish the site access, route and requirements of delivery of the equipment to the final installation site.

General comments:

5 Delivery details of packing methods

Select
- Standard packing for basic weather protection - A
- Good weather covering to protect machines under delivery - B
- Dust proof packing and wrapping for further storage needs - C
- Dustproof packing and timber casing - D
6 Removal and disposal of existing plant, equipment and services

Costs and any remedial work in this area must be clear to all parties at the time of tendering.

<table>
<thead>
<tr>
<th>Details:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant:</td>
</tr>
<tr>
<td>Services:</td>
</tr>
</tbody>
</table>

7 Drawings

7.1 Layout drawings must be submitted to the Client prior to tender to view the details of the installation.
7.2 Any drawings such as engineering services supplied or required by the Supplier and the Client must be clearly agreed and defined during the tender process.
7.3 All service(s) and connections must be agreed by the Supplier and Client (or their representative) during the tender process. These connections will then be clearly illustrated on the drawings as submitted with the tender.

Note: All Schematic drawings have to be supplied to Estates and HSDU (including Electrical and Mechanical drawings)

8 Documentation

8.1 Machine manuals must be supplied with the washer disinfectors on site delivery.
8.1 Pressure vessel certificates are to be supplied on machine delivery if required.

Note: All Engineering manuals/User manuals have to be supplied to Estates and HSDU.

9 Air supply (if required)

9.1 Compressed air maybe required for process control or for the drying.
9.2 It must be agreed at the tender how the air will be supplied to the washer disinfectors(s).

Select. (One or more)

A Individual machine compressors
B Common supply
C Air compressors paired up per two machines
D None supplied with tender
E Spare compressors supplied
F Other
G N/A

Comments and details:

10 Heating medium

10.1 The washer disinfectors may be steam or electrically heated in the various stages.
10.2 Medium choice will effect the cycle time.
10.3 The Supplier must discuss the options available and services required with the user.
Stages	Steam - yes or no	Electric - yes or no
Washing | |
Thermal disinfection | |
Drying | |
Or ALL stages | |

11 **Steam**

11.1 It is Facilities Services policy for the installation of a pressure reducing valve to be fitted in the steam line from the mains supply to the machine(s) to protect any direct acting valves on the machines from damage and to ensure a steady and safer supply pressure for the process.

11.2 Steam may be supplied indirectly to heat the water/air to the relevant control temperatures during the cycles through suitably manufactured heat exchangers.

Further details:

12 **Electrical supply**

12.1 It must be agreed at the tender stage what is the electrical loading /demand for the installation.

12.1 Discussions must be held with the relevant Estates department officers and the Suppliers to determine the supplies in general and if single or three phase is available or required.

Further details as required:

13 **Water supply**

13.1 An assessment should be carried out on the supply water used in all phases to the washer disinfectors prior to the procurement process.

13.2 A decision on whether further treatment is required can be assessed in conjunction with the Manager, AE(D) and Infection Control Officers and DE(W) at NWSSP-FS.

13.3 The Supplier to provide advice on the minimum supply pressure(s) required at each stage of the process(s).

Further details as required:
14 Washer disinfector monitoring

14.1 It is a requirement of NWSSP-FS that cycle independent monitoring is fitted to each washer disinfector in agreement with the client.
14.2 Monitoring could be a built in supervisor system, electronic independent system or data recorder as agreed with Facilities Services and the client.
14.3 It is a requirement that the instrumentation is connected to the Hospital IT server and system.

Details:

15 Consumables

15.1 At the time of delivery of the washer disinfector(s), consumables such as printer roles and cartridges MUST be supplied to the unit for a minimum three month operating period of constant use.
15.2 Detergents, rinse aids and other solutions must be supplied by the Manufacturer at the time of installation for at least three months operation.
15.3 Discussions must be made by the supplier with the SSD manager or representative prior to tender to discuss the solution options available with machines.
15.4 Rinse aid selection or requirements for final disinfection stage,
15.5 Consumables required to be supplied with the machines.

Comments, if required:
Detergent(s) required (make/type):
Details of general consumables required by the user:

16 Chamber furniture required

Numbers and types of loading trolleys:

Numbers and types of loading carriages (internal):

Further comments for loading equipment:
17 Testing and validation

17.1 Factory testing is not normally carried out, but if there is a requirement to carry out this function, the costs will have to be built into the tender.

17.2 Validation testing will be carried out by Facilities Services engineers on behalf of the client in co-operation with the manufacturer on site at all times until completion.

17.3 The AE(D) from Facilities Services will be monitoring and auditing all test results.

17.4 The Supplier will consult with the client and NWSSP-FS for any technical advice required.

Further comments/requirements:

Testing and maintenance contracts are to be quoted by the Manufacturer during the tender for the costs to be analyzed by the client for machine care after the warranty period

18 Service response times and costs

Details and client response time(s) requirements:

Breakdown advice time required:

Site attendance time required:

Spares availability in delivery to site:

19 Fascia and panelling

Details of panelling required – Panel work to be agreed to ensure maintenance access is optimized.

20 Training requirements

20.1 Staff training is required before the machine(s) can be put into service.

20.2 The training will include the monitoring system and logging requirements.

20.3 Factory testing can be arranged with prior agreement with the manufacturer.

20.4 Training is required for both Estates and Operational tests.

20.5 Full operational training for SSD staff will cover all staff who will be required to work on the machines.

20.6 Estates staff training will be required to cover:

 • Cycle control
• Machine controls and operating procedures
• Door operations
• Loading equipment
• Monitoring equipment
• Fault finding
• Repair/dismantle main components
• Cycle operation via the valves and operation components
• Basic cycle programming and fault analysis
• Demonstration of the maintenance manual

20.7 Numbers of staff required for training

<table>
<thead>
<tr>
<th>Operational staff</th>
<th>Estates staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details of shift times</td>
<td>Details of shift times</td>
</tr>
</tbody>
</table>

21 Warranties
Details should be quoted and agreed with the client and the date from which it will commence.
Costs in Section 2
• The agreement must be clear before the purchase is made.
• Extended warranty options can be quoted and discussed with the Client to cover both maintenance and testing as required.
• Number of visits per year.
• Cost of each visit.

Commencement and completion dates for warranty period should be clearly documented as part of procurement contract.

22 Contract testing/maintenance
Contracts can be built into the tender with full consultation with the client
• Quarterly testing contracts.
• Breakdown call outs.
• Response times.
• Maintenance contracts as required.
• Availability of spares.

Details to be given in Section 2 by the Supplier
Note: Communication has to be in place with Estates to deal with first line response to breakdown situation.
23 Gauges fitted for the Washer Disinfectors
(Select as required)

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam supply pressure – main</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced steam supply pressure at machine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water supply pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air supply pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door seal pressure if active seal fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mains water supply temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank water temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot water service temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24 Ventilation requirements of the washer disinfectors

24.1 Individual machines are or can be ventilated independently or linked into a common extract. The Supplier should clearly indicate at the tendering stage what details they are required to supply or what are to be fitted by the Hospital unit.

24.2 Drawings and air duties must be supplied with the tender documents.

24.3 The Supplier must inform the purchaser if the fan(s) are required as part of the machine as supplied.

24.4 The Supplier must inform the purchaser if a complete system is required and where it will be terminated under the supply contract, i.e. for others to design and extend the system to a safe extract position outside the building.

24.5 The system must be constructed to allow correct drainage of possible condensate forming in the duct to drain as per the WHTM. It can be constructed or manufactured of non-corrosive materials and heat recovery systems can be considered.

24.6 The supplier must ensure that the Estates Department is fully consulted in the early stages of procurement so that appropriate designs can be drawn up with the client. This will include drawings for consultation.

Additional notes or comments for consideration for the tender
Section 2

This section is a guide for the type of information and energy duties that are required by the Client for a good and effective installation.

INFORMATION TO BE COMPLETED BY SUPPLIER

Details of Microprocessor Control System

The following information shall be provided by the Supplier:

- Details of independent body where complete program and software are lodged.
- Details of interface and file protocol requirements for transfer of data in the storage device to an external computer.
- Details of diagnostic checks incorporated in the system.
- Details (including cost) of the data storage device.
- Maximum ambient temperature within the protective case °C
- With an ambient temperature of °C

Interim Storage Requirements

Suppliers are required to advise of the storage conditions required if different from final installed location.

If interim storage is needed state storage conditions required.

Details: ..

Warranty Details

Length of standard/free warranty period offered: ..

Number of included service visits during warranty period: ..

Conditions of Warranty

Projected mean time between failures: ..

Guaranteed up-time: ..

Please state definition of up-time: ..

..

..

..

..

Please state remedy available to purchaser if guaranteed up-time is not achieved:

..

..
Extended warranty options for service and maintenance

Please complete the following schedule for a planned preventative maintenance and emergency call out contract to cover all items shown in the individual site schedule and to commence 12 / 24 / 36* months after acceptance, if required by the purchaser:

Number of service visits per annum

Duration of service visits hours per machine

Normal working hours are 0800-1800 unless otherwise stated:

All emergency call-outs included: YES / NO*

Price for emergency call-out during normal working hours, if not included: £ per hour

All out of hours working included: YES / NO*

*Delete as applicable

Price for Saturday working £ per hour

Price for Sunday working £ per hour

Price for evening working £ per hour

Price for bank holiday working £ per hour

Response time to emergency call-outs (engineer on site) hours

Latest time on a working day to guarantee engineer on site same day

Base of engineer to service this site

How many other sites does he/she service

Number of engineers available to service this site

All spare parts included YES / NO* *Delete as applicable

Please list any parts that are not included that appear on the following lists:

Ten most used commodities by volume

Description, Part No., Delivery lead time, Price (exc. VAT)

1.

2.

3.

4.

5.

6.

7. ..

8. ..

9. ..

10. ..
Most used commodities by value:
Description, Part No., Delivery lead time, Price (exc. VAT)
1.
2.
3.
4.
5.
6.

Location of spare parts

Delivery lead time for spare parts

Is Remote Maintenance and Diagnosis via modem available: YES / NO*

Price for supply and installation: £

Software Upgrades (during warranty or maintenance contract period): Safety / Defect Upgrades Free of charge / At cost*

New Applications Free of charge / At cost*
*Delete as applicable

Annual maintenance contract costs including validation to the latest WHTM

Contract price for one year £ exc. VAT

Five year maintenance contract £ exc. VAT

Annual maintenance contract costs excluding validation:

Contract price for one year £ exc. VAT

Five year maintenance contract £ exc. VAT

Contract price for five years paid annually (including warranty)
The maintenance contract will be at this price with no price increases. These costs are not to form part of the total costs but are to be provided as options for considerations.

Service Requirements
The following information shall be provided by the Supplier for each type of machine supplied (Based on a standard cycle being processed).

Service Requirements

Machine number ...

Water flow rate ...

Water supply pressure ...

Water consumption per cycle ...

Drain flow rate ...

Drain size ...

83
Drain type ..
Drain vent size and type ..
Compressed air flow rate ..
Compressed air supply pressure
Compressed air consumption per cycle
Electricity voltage ..
Electricity current ..
Electricity maximum power kW
Air filter (air removal) expected life
Test procedure(s) for filter integrity

If steam heating is used:

Steam flow rate – average ..
Steam flow rate – maximum ..
Steam consumption per cycle ...
Steam supply pressure ..
Safety valve outlet size ..
Condensate flow rate ...
Sound power per washer-disinfector
Total sound power all specified washer-disinfector(s)
Process chemical cost per cycle:
Other ...
Cost per cycle ..
Total energy cost per cycle (please specify cycle type) ...

Overall Washer Disinfector Dimensions
The following information shall be provided by the Supplier.

M/C no ...
Internal chamber dimensions (H x W x L) mm
Max floor area ...
Height ..
Max floor ..
Loading ...
Force kN/m² ...
Max fascia opening ..
Porterage details ...

Total cost of processing a typical operational cycle to the requirements identified in
WHTM 01-01 Part D, on a configuration suitable for typical devices reprocessed
within the departmental (including energy and process chemical costs): ..

Energy cost basis: ...
Mains cold water £ /m³ ..
Hot water £ /m³ ...
Electricity p/kWh ...
Steam £ /1000kg ...
Other ..

Overall Cycle(s) Time(s)

Note: For continuous process machines this should be expressed as the time from the first basket in to the last basket exit for a production load.

The following information shall be provided by the Supplier:

Load (including number of baskets) Maximum Cycle Time ..
Details (including weight and dimensions) ..

Heat Emission

The following information shall be provided by the Supplier.

Heat emission during normal operation at ambient temperature of 25°C:

to fascia - with door(s) closed W

to plant area W

Contract Completion

The following information shall be provided by the Supplier.

Time required from receipt of order in works .. weeks
Time required for installation and .. weeks
Pre-commissioning on site ..
Time required for commissioning on site .. weeks
Detailed Cost Breakdown
The following information shall be provided by the Supplier.

Item Washer Disinfector Type Model ...

Name/No ..

No. of ...

Agreed NHS Supply Chain contract prices

Discount %
Unit total Price

<table>
<thead>
<tr>
<th>Chamber Furniture</th>
<th></th>
<th>Numbers of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trolleys</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>Carriages</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>Total costs</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>WD 1</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>WD 2</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>WD 3</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>WD 4</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>WD 5</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>WD 6</td>
<td>£</td>
<td></td>
</tr>
<tr>
<td>Total costs</td>
<td>£</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Tender

The following information shall be provided by the Supplier.

Supply (Nos. of) ... washer disinfector(s) ex works ..

Delivery, offloading & positioning of WD(s) ..

Installation of WD(s) ..

Supply and installation of services ..

Supply and installation of fascia panelling ..

Site commissioning, i.e. installation checks and tests ..

Test equipment, test loads and materials (if required) ..

12 months service including 4 off quarterly visits ..

Staff training, consisting of ... days

Supply chamber furniture type ..

Costs of consumables ..

Costs of cleaning solutions, detergents, etc. ..

Monitoring equipment ..

Supply ... set(s) of recommended service spares ..

Contingency - to be set by Purchaser ..

Sub-Total .. VAT @ %

Hospital: ...

Site: ...

Department: ...

Total £ ..

Comments: ...

...

...

...

...

...

...

...

Date of tender: ..
References

Acts and Regulations

All the acts and regulations shown below can be accessed from the www.legislation.gov.uk/ website

Control of Substances Hazardous to Health Regulations (COSHH)
Electromagnetic Compatibility Regulations
Machinery Regulations
Manual Handling Operations Regulations
Medical Devices Regulations
Pressure Equipment Regulations
Pressure Systems Safety Regulations
Water Supply (Water Fittings) Regulations

British Pharmacopoeia

http://www.pharmacopoeia.co.uk/

British Standards Institution

BS 853-1 Specification for vessels for use in heating systems Calorifiers and storage vessels for central heating and hot water supply
BS 1427 Guide to on-site test methods for the analysis of waters
BS 1752, ISO 4793 Specification for laboratory sintered or fritted filters including porosity grading
BS 2690-104 Methods of testing water used in industry Silica: reactive, total and suspended
BS 3928 Method for sodium flame test for air filters (other than for air supply to I.C. engines and compressors)
BS 5404-2 Specification for plastics laboratory ware Graduated measuring cylinders
BS EN 837-1 Pressure gauges Bourdon tube pressure gauges. Dimensions, metrology, requirements and testing
BS EN 55014-1 Electromagnetic compatibility. Requirements for household appliances, electric tools and similar apparatus Emission
BS EN 61000-4-3 Electromagnetic compatibility (EMC) Testing and measurement techniques. Radiated, radio-frequency, electromagnetic field immunity test
BS EN 61000-6-1 Electromagnetic compatibility (EMC) Generic standards. Immunity for residential, commercial and light-industrial environments
BS EN 61000-6-3 Electromagnetic compatibility (EMC) Generic standards. Emission standard for residential, commercial and light-industrial environments
BS EN 61010-1 Safety requirements for electrical equipment for measurement, control, and laboratory use General requirements
BS EN 61010-2-040:2005 Safety requirements for electrical equipment for measurement, control and laboratory use Particular requirements for sterilizers and washer-disinfectors used to treat medical materials Replaces IEC 61010-2-045
BS EN ISO 3746 Acoustics. Determination of sound power levels and sound energy levels of noise sources using sound pressure. Survey method using an enveloping measurement surface over a reflecting plane
BS EN ISO 4788 Laboratory glassware. Graduated measuring cylinders
BS EN ISO 6878, BS 6068-2.28 Water quality. Determination of phosphorus. Ammonium molybdate spectrometric method
BS EN ISO 14664-1 Cleanrooms and associated controlled environments. Classification of air cleanliness
BS EN ISO 15883-1 Washer-disinfectors. General requirements, terms and definitions and tests
BS EN ISO 15883-2 Washer-disinfectors. Requirements and tests for washer-disinfectors employing thermal disinfection for surgical instruments, anaesthetic equipment, bowls, dishes, receivers, utensils, glassware, etc.

European legislation

Health & Safety Executive
www.hse.gov.uk/index.htm

Control of Substances Hazardous to Health (COSHH).
http://www.hse.gov.uk/coshh/

Healthcare guidance and publications

The publications below are available from the NHS Wales Shared Services Partnership - Facilities Services websites
Intranet: howiis.wales.nhs.uk/whe
Internet: www.wales.nhs.uk/whe

Health Building Note 13 – Sterile services department
Welsh Health Technical Memorandum 02-01 ‘Medical gas pipeline systems’
Health Technical Memorandum 03-01 Part B ‘Specialised ventilation systems in healthcare’

International Standards
http://www.iso.org/iso/home/store/catalogue_ics.htm
ISO 554 - Standard atmospheres for conditioning and/or testing – Specifications

Medicines and Healthcare Products Regulatory Agency (MHRA)
www.mhra.gov.uk
DB 2006(04) – ‘Single use medical devices Implications and Consequences of Reuse.
http://www.mhra.gov.uk/Publications/Safetyguidance/DeviceBulletins/CON2024995

Royal Society of Chemistry - Chemical Abstracts Service
http://www.rsc.org/Library/Services/CAS/CASRNumbers.asp

The Surgical Materials Testing Laboratory – SMTL
http://www.smtl.co.uk/home-main-menu.html
Water quality requirements for surgical instrument testing
http://medidex.com/research/832-water-papers-1-4.html

United Nations Environment Programme – Ozone Secretariat
http://ozone.unep.org/new_site/en/about_the_secretariat.php
Montreal Protocol

Water Regulations Advisory Scheme
http://www.wras.co.uk/
Useful links

Care and Social Services Inspectorate Wales
wales.gov.uk/cssiwsubsite/newcssiw

Healthcare Standards for Wales
www.hiw.org.uk/

HOWIS – Health of Wales Information Service
www.wales.nhs.uk/ Internet
howis.wales.nhs.uk/ NHS Wales Intranet

Institute of Decontamination Sciences.
www.idsc-uk.co.uk/

Institute of Healthcare Engineering and Estate Management.
www.iheem.org.uk/

Medicines and Healthcare products Regulatory Agency.
www.mhra.gov.uk

Welsh Health Circulars
www.wales.nhs.uk/researchandresources/publications
2000-2008 Internet
howis.wales.nhs.uk/whcirculars.cfm 1976 - 2008 NHS Wales Intranet

NHS Wales Shared Services Partnership - Facilities Services
www.wales.nhs.uk/whe Internet
howis.wales.nhs.uk/whe NHS Wales Intranet